Tag Archives: precision bearing

China wholesaler CZPT High Precision Heavy Duty Linear Motion Roller Bearing bearing air

Product Description

Product Description

 

ZCF CHW SERIES -Roller Linear CZPT of good quality and good accuracy.

Specification

 

 

Detailed Photos

 

Accuracy definition

ACCURACY LEVEL
 

1. THE ACCURACY OF CH SERIES LINEAR XIHU (WEST LAKE) DIS.S CAN BE DIVIDED INTO FIVE LEVELS: COMMON, HIGH, PRECISION, SUPER-PRECISION AND ULTRA-PRECISION. CUSTOMERS CAN CHOOSE THE ACCURACY LEVEL ACCORDING TO THE ACCURACY REQUIREMENT OF EQUIPMENT.

2.  ACCURACY OF NON-INTERCHANGEABLE ROLLER LINEAR XIHU (WEST LAKE) DIS.: 

MODEL CR – 25,30,35        unit : mm
ACCURACY LEVEL COMMON HIGH PRECISION HIGH-PRECISION ULTRA-PRECISION
(C) (H) (P) (SP) (UP)
TOLERANCE OF H ± 0.1 ± 0.04 0- 0.04 0- 0.02 0- 0.01
TOLERANCE OF N ± 0.1 ± 0.04 0- 0.04 0- 0.02 0- 0.01
TOLERANCE OF MUTUAL H 0.02 0.015 0.007 0.005 0.003
TOLERANCE OF MUTUAL N 0.03 0.015 0.007 0.005 0.003
MOTION PARALLELISM OF C ON A MOTION ACURACY
MOTION PARALLELISM OF D ON B MOTION ACURACY

 

MODEL CR – 45,55,65          unit : mm
ACCURACY LEVEL COMMON HIGH PRECISION HIGH-PRECISION ULTRA-PRECISION
  (C) (H) (P) (SP) (UP)
TOLERANCE OF H ± 0.1 ± 0.05 0- 0.05 0- 0.03 0- 0.02
TOLERANCE OF N ± 0.1 ± 0.05 0- 0.05 0- 0.03 0- 0.02
TOLERANCE OF MUTUAL H 0.03 0.015 0.007 0.005 0.003
TOLERANCE OF MUTUAL N 0.03 0.02 0.01 0.007 0.005
MOTION PARALLELISM OF C ON A MOTION ACURACY
MOTION PARALLELISM OF D ON B MOTION ACURACY

3. MOTION ACCURACY CHART

RAIL LENGTH (mm) ACCURACY LEVEL (µm)
C H P SP UP
~ 100 12 7 3 2 2
100 ~ 200 14 9 4 2 2
200 ~ 300 15 10 5 3 2
300 ~ 500 17 12 6 3 2
500 ~ 700 20 13 7 4 2
700 ~ 900 22 15 8 5 3
900 ~ 1,100 24 16 9 6 3
1,100 ~ 1,500 26 18 11 7 4
1,500 ~ 1,900 28 20 13 8 4
1,900 ~ 2,500 31 22 15 10 5
2,500 ~ 3,100 33 25 18 11 6
3,100 ~ 3,600 36 27 20 14 7
3,600 ~ 4,000 37 28 21 15 7

 

Production process

Advanced equipments & Rigorous quality control plan

Company Profile

ZheJiang CZPT Precision Technology Co.,Ltd. 
is a professional manufacturer of linear guide, linear module and ball screw etc.she is located in HangZhou city,ZheJiang ,China.The production base covers 33333 square meters and holds a building area of 16000 square meters at present. with over 10 years’ effort of our whole team. and also trust and support from our respected customers. We are so lucky to become 1 famous brand in China, who make international standard products.we aim to serve customers world-widely.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Shipboard Crane, Workshop Crane
Material: Steel
Structure: Machine Table
Installation: All
Driven Type: N/a
Carrying Capacity: Weight Level
Samples:
US$ 20/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences Between Linear Ball Bearings and Linear Roller Bearings

Linear ball bearings and linear roller bearings are two distinct types of linear bearings, each with its own design and characteristics. Here’s how they differ and when they are preferred:

  • 1. Design:

Linear ball bearings use ball bearings to provide rolling motion along the shaft. Linear roller bearings, on the other hand, use cylindrical or needle rollers for motion. Roller bearings have a larger contact area, distributing the load over a broader surface.

  • 2. Load Capacity:

Linear roller bearings typically have a higher load-carrying capacity compared to linear ball bearings. This makes them suitable for applications with heavier loads and greater force requirements.

  • 3. Friction and Smoothness:

Linear ball bearings offer lower friction and smoother motion due to the point contact between the balls and the shaft. Roller bearings may have slightly higher friction but can handle larger loads without sacrificing smoothness.

  • 4. Precision and Accuracy:

Linear ball bearings are often preferred for applications requiring high precision and accuracy. Their point contact provides precise positioning and repeatability, making them suitable for tasks like CNC machining and optical systems.

  • 5. Noise and Vibration:

Linear ball bearings tend to generate less noise and vibration due to their smoother rolling action. Roller bearings may produce slightly more noise but are still used in applications where noise is not a critical factor.

  • 6. Speed:

Linear ball bearings are well-suited for high-speed applications due to their low friction and smooth motion. Roller bearings are also capable of high speeds but may have slightly different characteristics.

  • 7. Cost:

Linear ball bearings are often more cost-effective for lower-load and precision applications. Linear roller bearings may be preferred for heavy-duty applications, which may justify their higher cost.

  • 8. Application Scenarios:

Linear ball bearings are commonly used in applications where precision, smooth motion, and accuracy are paramount, such as in CNC machinery, 3D printers, and optical systems. Linear roller bearings excel in applications with higher loads, such as heavy machinery, material handling, and industrial automation.

In summary, the choice between linear ball bearings and linear roller bearings depends on the specific requirements of the application. Each type has its strengths and weaknesses, and selecting the right type ensures optimal performance and longevity.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Linear Slides

Linear bearings play a crucial role in ensuring the smooth movement of industrial conveyors and linear slides by providing low-friction support and guiding mechanisms. Here’s how linear bearings contribute to their operation:

  • Smooth Motion: Linear bearings offer precise and smooth linear motion to conveyors and linear slides, allowing materials or objects to move seamlessly along a defined path.
  • Low Friction: The design of linear bearings minimizes friction between the moving parts, reducing energy consumption and wear. This is particularly important for conveyors and slides that require frequent and continuous movement.
  • Guidance: Linear bearings guide the movement of the conveyor belts or linear slides, ensuring that they stay on track and follow the desired path without deviation.
  • Load Support: Linear bearings provide support for both radial and axial loads, allowing conveyors to carry heavy loads and linear slides to accommodate objects or components without sacrificing smoothness.
  • Precision: Linear bearings offer high precision and accuracy, which is essential for applications where precise positioning is required, such as in automated manufacturing processes.
  • Reduced Noise and Vibration: Linear bearings contribute to quieter operation by reducing noise and absorbing vibrations generated during movement. This is beneficial in environments where noise reduction is important.
  • Longevity: By minimizing friction and wear, linear bearings enhance the longevity of conveyors and linear slides, reducing the need for frequent maintenance and replacement.

In industrial settings, linear bearings ensure that conveyors efficiently transport materials, products, or components, while linear slides provide controlled and accurate movement for various applications. Whether in manufacturing, logistics, or automation, the use of linear bearings results in enhanced efficiency, reduced downtime, and improved overall performance.

linear bearing

Design Principles and Functionalities of Linear Bearings

Linear bearings are designed with specific principles to facilitate controlled linear motion along a single axis. These design principles contribute to their functionalities, making them essential components in various applications:

  • Rolling Elements:

Linear bearings typically feature rolling elements, such as balls or rollers, that move along a track or rail. These rolling elements reduce friction and enable smooth linear motion.

  • Guiding Mechanism:

Linear bearings incorporate a guiding mechanism to constrain the motion to a single axis. This guiding mechanism ensures that the linear bearing moves precisely along the desired path.

  • Load Distribution:

The design of linear bearings allows for effective distribution of loads, both in the radial and axial directions. This load distribution ensures stability and prevents excessive stress on individual components.

  • Rail or Track:

Linear bearings typically run along a rail or track that provides a smooth and accurate path for the rolling elements. The rail is designed to resist wear and maintain its precision over time.

  • Cage or Carriage:

Linear bearings use a cage or carriage to house the rolling elements and maintain their proper spacing. This arrangement ensures even load distribution and smooth movement.

  • Sealing and Lubrication:

Linear bearings often incorporate sealing mechanisms to protect the rolling elements from contaminants and to retain lubrication. Proper lubrication ensures smooth motion and extends the bearing’s lifespan.

  • Mounting Options:

Linear bearings are designed to be mounted in various ways, depending on the application’s requirements. Mounting options include flange-mounted, base-mounted, or end-supported configurations.

  • Adjustability:

Many linear bearings are designed with provisions for adjustment, allowing users to fine-tune the preload or clearance to optimize performance and minimize play.

  • Materials:

Linear bearings are constructed from materials that offer high wear resistance, durability, and corrosion resistance. Common materials include steel, stainless steel, and various engineering plastics.

  • Accessories:

Accessories such as end caps, seals, and lubrication systems can enhance the functionality and lifespan of linear bearings by providing protection and ensuring proper maintenance.

Functionalities of linear bearings include providing precise linear motion, guiding components along a defined path, minimizing friction, distributing loads, and maintaining stability. The design principles ensure reliable operation and make linear bearings indispensable in applications requiring controlled and accurate linear motion.

China wholesaler CZPT High Precision Heavy Duty Linear Motion Roller Bearing   bearing airChina wholesaler CZPT High Precision Heavy Duty Linear Motion Roller Bearing   bearing air
editor by CX 2024-05-13

China Good quality Precision All Series Lm Linear Motion Ball Sliding Bearing for Shafts bearing air

Product Description

   

Company Profile

       MKS Hydraulics ZheJiang Co., Ltd.is a scientific and professional bearing producing enterprise, gathering R&D, producing and sales as 1  integration.mainly operating on non-standard, special andgeneral bearings.

       The company is especially focusing on the research and manufacture of general high-tech production with the 20 years R&D experience, professional R&D staff and advanced equipment, of which 8 sets are imported equipment and 40 sets are high-precision processing equipment. it has invested for building a modern workshop, including 1 Bainite heat processing workshop of world advanced level, 1 machine processing workshop, 2 moder thermostatic &no-dust roller grinders, assembly workshop, physical-chemical testing center, heating laboratory and moder-managed warehouse. Depending on the markets in China and abroad, the company puts an active attitude upon products R&D, resulting a healthy circulation of 1 development generation, 1 reserve generation, and 1 producion generation. The enterprise enlarges the R&D investment, creates own brand, and strives to increase the exporting products of high-tech & high value-added, gains the honorable sales result and grows into 1 of the largest R&D enterprise in China of non-standard bearing and special bearing.

       The advanced technology, outstanding quaity and considerable service after sales with enthusiasm make us get the rapid development in quite short time of years, and now it becomes the largest developing and producing enterprise in Asia of concrete carrier truck, speed-reducing machine,mine-digging machine, hydraulic pump spindle bearing and crecent bearing. With the continuing and wholly new developing theory of Technology is the motivation and quality is the life, We are not only pursuing the leading position in China, but also determined to march into the worldwide bearing area during it developing process, The products are mainly applied on the industries of mine, metalurgy, engineering, machineny, machine tool,electronic machine and so on, The products have gained the excllent sales resul in the markets of Europe, Southeast Asia, Middle East and so on in a dozen of countries and areas.

Company Environment

Company Advantages

Packaging & Shipping

FAQ

1. how can we guarantee quality?
Always final Inspection before shipment;

2.what can you buy from us?
Auto Bearing,Bearing Housing,Taper Roller Bearing,Casting,Hydraulic pump,Hydraulic parts,excavator parts and so on.

Ceep groove ball bearing/Self aligning ball bearing/Cylindrical roller bearing/Spherical roller bearing/ Angular contact ball bearing/Tapered roller bearing/ Thrust ball bearing/Thrust cylindrical roller bearing/Needle roller bearing

3. why should you buy from us not from other suppliers?
One stop bearing and mechanical customized parts,
Designed bearing,
Small quantity order available 
Factory price offer
OEM ODM bearing service

4.What is the transportation?
lf small quantity,we suggest to send by express,such as DHL,UPS,TNT FEDEX flarge amount,by air or sea shipping.

5.Can we design packaging?
Except regular packing,and we can make customer’s own packing.

6.What’s your payment method?
We can accept LC, T/T, D/P, PayPal, Western Union, Small-amount payment, MoneyGram etc.

7.Can the company provide free samples?
We can provide samples for free. You only need to provide shipping.

8.Is the company a production factory or a trading company?
MKS company is a manufacturing enterprise focusing on bearings ,hydraulic pumps and hydraulic parts , produce and sales.

If you have any questions,Please contact us,We must be reply quickly.

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: High Speed
Function: Ordinary
Flange Shape: Cutting-Edge
Shape: Straight
Series: LM
Material: Bearing Steel
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences Between Linear Ball Bearings and Linear Roller Bearings

Linear ball bearings and linear roller bearings are two distinct types of linear bearings, each with its own design and characteristics. Here’s how they differ and when they are preferred:

  • 1. Design:

Linear ball bearings use ball bearings to provide rolling motion along the shaft. Linear roller bearings, on the other hand, use cylindrical or needle rollers for motion. Roller bearings have a larger contact area, distributing the load over a broader surface.

  • 2. Load Capacity:

Linear roller bearings typically have a higher load-carrying capacity compared to linear ball bearings. This makes them suitable for applications with heavier loads and greater force requirements.

  • 3. Friction and Smoothness:

Linear ball bearings offer lower friction and smoother motion due to the point contact between the balls and the shaft. Roller bearings may have slightly higher friction but can handle larger loads without sacrificing smoothness.

  • 4. Precision and Accuracy:

Linear ball bearings are often preferred for applications requiring high precision and accuracy. Their point contact provides precise positioning and repeatability, making them suitable for tasks like CNC machining and optical systems.

  • 5. Noise and Vibration:

Linear ball bearings tend to generate less noise and vibration due to their smoother rolling action. Roller bearings may produce slightly more noise but are still used in applications where noise is not a critical factor.

  • 6. Speed:

Linear ball bearings are well-suited for high-speed applications due to their low friction and smooth motion. Roller bearings are also capable of high speeds but may have slightly different characteristics.

  • 7. Cost:

Linear ball bearings are often more cost-effective for lower-load and precision applications. Linear roller bearings may be preferred for heavy-duty applications, which may justify their higher cost.

  • 8. Application Scenarios:

Linear ball bearings are commonly used in applications where precision, smooth motion, and accuracy are paramount, such as in CNC machinery, 3D printers, and optical systems. Linear roller bearings excel in applications with higher loads, such as heavy machinery, material handling, and industrial automation.

In summary, the choice between linear ball bearings and linear roller bearings depends on the specific requirements of the application. Each type has its strengths and weaknesses, and selecting the right type ensures optimal performance and longevity.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China Good quality Precision All Series Lm Linear Motion Ball Sliding Bearing for Shafts   bearing airChina Good quality Precision All Series Lm Linear Motion Ball Sliding Bearing for Shafts   bearing air
editor by CX 2024-05-08

China best High Precision 3D Printer Parts Needle Roller Linear Bearing Lm6uu for Slide Motion Shaft 3D Printer & Glove Knitting Machine Linear Bearing with Great quality

Product Description

 

 

 

PRODUCTS CATALOGUE

 

Bearing Code

Internal Diameter(mm)

External Diameter(mm)

Length

Weight

(mm)

(KG)

LM6UU

6

12

19

0.007

LM8UU

8

15

24

0.015

LM10UU

10

19

29

0.03

LM12UU

12

21

30

0.032

LM13UU

13

23

32

0.043

LM16UU

16

28

37

0.069

LM20UU

20

32

42

0.087

LM25UU

25

40

59

0.571

LM30UU

30

45

64

0.25

LM35UU

35

52

70

0.39

LM40UU

40

60

80

0.58

LM50UU

50

75

100

1.58

LM60UU

60

90

110

1.86

LM80UU

80

120

140

4.42

    

    

 

APPLICATIONS

 

OUR WORKSHOP

 

OUR FACTORY

 

 PACKAGE

 

 

WAY OF DELIVERY

 

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Corrosion Resistant, High Temperature, High Speed
Function: Ordinary
Flange Shape: Without Flanged
Samples:
US$ 3/Set
1 Set(Min.Order)

|

Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Considerations for Selecting the Right Type and Size of Linear Bearing

Choosing the appropriate type and size of linear bearing requires careful consideration of various factors to ensure optimal performance and compatibility with the application. Here are important considerations to keep in mind:

  • 1. Load Capacity:

Determine the maximum load the linear bearing will need to support. Consider both static and dynamic loads to select a bearing that can handle the expected weight and forces.

  • 2. Speed and Acceleration:

Assess the required speed and acceleration of the linear motion. Different linear bearing types have different speed limitations, so choose one that can accommodate the desired motion profile.

  • 3. Precision and Accuracy:

If your application requires precise positioning, choose linear bearings that offer high accuracy and repeatability. Linear ball bearings are known for their precision, while linear roller bearings offer higher load capacity.

  • 4. Environment:

Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Select linear bearings that are designed to withstand the specific environmental conditions.

  • 5. Rail or Shaft Compatibility:

Ensure that the chosen linear bearing is compatible with the rail or shaft you intend to use. Proper fit and alignment are crucial for smooth motion and long bearing life.

  • 6. Space Constraints:

If your application has limited space, choose compact linear bearings that can fit within the available area without compromising performance.

  • 7. Maintenance Requirements:

Consider the level of maintenance your application can accommodate. Some linear bearings are self-lubricating, reducing the need for frequent maintenance.

  • 8. Noise Level:

For noise-sensitive environments, opt for linear bearings that provide quiet operation to avoid disruptions caused by excessive noise.

  • 9. Mounting Options:

Consider how the linear bearing will be mounted and integrated into your system. Different bearings may require specific mounting configurations.

  • 10. Cost and Budget:

Balance the desired features and performance with your budget constraints. While high-performance linear bearings may offer advanced features, they can also come at a higher cost.

By carefully evaluating these factors, you can choose the most suitable type and size of linear bearing for your specific application. Consulting with bearing manufacturers and engineers can also provide valuable insights to ensure the optimal selection.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China best High Precision 3D Printer Parts Needle Roller Linear Bearing Lm6uu for Slide Motion Shaft 3D Printer & Glove Knitting Machine Linear Bearing   with Great qualityChina best High Precision 3D Printer Parts Needle Roller Linear Bearing Lm6uu for Slide Motion Shaft 3D Printer & Glove Knitting Machine Linear Bearing   with Great quality
editor by CX 2024-05-08

China supplier 1688 Asian Standard Precision Linear Bearing Flange Bearings Can Be Used for Precision Machinery Printing Presses and Other Motorcycle Accessories bearing driver

Product Description

Product  Name: Asia standard lengthened Square Flanged Linear Bearing

   

 

  Linear motion bearings have the characteristics of smooth movement, low friction, high rigidity, long life, economy, easy to maintain or replace, 

 

Our priority is 100% quality control and 100% customer satisfaction. We have a responsibility to help our customers to be competitive and advantageous in the market 

 

Maneuvering linear slides such as machine slides, XY tables, roller tables and some dovetail sliders are moved by the bearings of the drive mechanism. Not all linear slides are electric, there are non-electric dovetail slides, ball bearing sliders and roller sliders that provide low friction linear motion for inertially or manually driven devices. All linear sliders provide linear motion according to bearings, whether they are ball bearings, dovetail bearings or linear roller bearings. XY tables, linear stages, machine sliders and other advanced sliders use linear motion bearings to provide multi-axis movement along X and Y.

 

 

Product General information

a, Low frictional linear motion
    Steel balls are accurately guided by a retainer, so low frictional resistance and stable linear motion can be achieved.
    Simple replacement of conventional plain bushings
    It is easy to use Linear Bushings instead of conventional plain bushings, because both types are used with a round shaft, and no major redesign is necessary.
b, Wide variations
     For each dimensional series, standard, adjustable clearance and open types are available with and without seals, so the best     linear bushing for the application may be selected. In addition to the standard type, the high-rigidity long type is available.         These types can be selected to suit the requirements in applications.
c, Miniature linear bushing LM Compact design
    Miniature Linear Bushing is very small in size, allowing for compact assembly in machines and equipment.

d, High Reliability

     ERSK linear bearing has very stringent quality control standards covering every production process. With proper lubrication and use,trouble-free operation for an extended period of time is possible.

e,Smooth Operation

   The high efficiency of linear shaft is vastly superior to conventional shaft. The torque required is less than 30%. Linear motion can be easily changed from rotary motion. The linear bearings are moved very smoothly in the linear shaft.

f,High Durability

   Rigidly selected materials, intensive heat treating and processing techniques, backed by years of experience,have resulted in the most durable linear bearings manufactured.

g,Easy interchangable

h,Easy maintenance

    the linear rails can replace the base surface installation, the old wear parts (rails and blocks) can be replaced, reduce costs.

i,Easy installation

   the linear rails and carriages can be changed easily, reduce material costs, reduce product prices, reduce product replacement costs and time.

 

Company Profile


 

      Yiboyuan (HangZhou City) Precision Machinery Co., Ltd. is located in Bacha Road Industrial Park, HangZhou City, HangZhou City, ZheJiang Province, is a professional manufacturer of linear bearings 

integrating design, research and development, production and sales. The company’s main products are: YBYZ linear bearings, YBYZ linear flange bearings, YBYZ nickel-plated linear bearings, YBYZ steel linear bearings, YBYZ box sliders, YBYZ smooth shaft supports, YBYZ self lubricating bearings, YBYZ outer steel inner copper linear bearings, YBYZ aluminum-plastic linear bearings, YBYZ all-plastic linear 

bearings, YBYZ graphite copper sleeved linear bearings, YBYZ fixed rings, nut seats, cross shaft brackets and so on. Yiboyuan linear bearings should build the most complete linear bearing enterprises and smooth shaft supporting products at home and abroad, and solve one-stop procurement services for automation companies.Our mission – to create revenue benefits for customers, provide high-quality products for the market, and create a stage for employees to play, the future Yiboyuan is a high-tech, service-oriented, international Yiboyuan, to build a century-old brand is our continuous goal.

Brand trademark registration
 

Yiboyuan (HangZhou) Precision Machinery Co., Ltd. is a professional manufacturer of linear motion products with many years of experience. And has its own registered brand YBYZ, we specialize in the production of linear bearings, plain bearings, shaft bearings, box sliders, self-lubricating copper sleeve. Good quality, competitive price. Our company is located in HangZhou City, ZheJiang Province. Close to HangZhou Port, ZheJiang Port. 

 

Our products are widely used in precision machinery, fitness equipment, printing presses, packaging machines, medical and food machinery, textile machinery and other machinery and auxiliary equipment. Our products sell well in North America, Western Europe, Australia, Southeast Asia, the Middle East, South America and other regions.

Our packing: 
* Industrial pakage     Address: Industrial Park, Bachalu Town, HangZhou City.
HangZhou City, ZheJiang Province.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Vacuum, Magnetically, Low Temperature, Corrosion Resistant, High Temperature, High Speed
Function: Super
Flange Shape: None
Shape: Straight
Series: LM
Material: Bearing Steel
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Challenges and Solutions for Addressing Friction and Wear in Linear Bearings

Friction and wear are common challenges in linear bearings that can impact their performance and lifespan. Here are the challenges and some solutions to address them:

  • 1. Challenge: Friction:

Friction between the bearing components can lead to increased energy consumption, heat generation, and reduced efficiency.

  • Solution: Lubrication:

Proper lubrication is essential to minimize friction. Lubricants reduce the contact between moving parts, allowing smoother motion and reducing wear. Choosing the right lubricant and applying it correctly can significantly mitigate friction-related issues.

  • 2. Challenge: Wear:

Continuous movement can lead to wear on the bearing surfaces, affecting precision and performance over time.

  • Solution: Regular Maintenance:

Implementing a regular maintenance schedule can help monitor wear and replace worn components before they compromise performance. This includes cleaning, re-lubrication, and periodic inspection of the bearing’s condition.

  • 3. Challenge: Contaminants:

Dust, debris, and foreign particles can enter the bearing system, leading to increased friction and accelerated wear.

  • Solution: Sealing and Protection:

Using seals, covers, or protective enclosures can help prevent contaminants from entering the bearing system. These protective measures maintain the integrity of the lubricant and extend the bearing’s lifespan.

  • 4. Challenge: Improper Installation:

If linear bearings are not installed correctly, misalignment and uneven load distribution can contribute to friction and wear.

  • Solution: Precise Installation:

Follow manufacturer guidelines for proper installation, ensuring accurate alignment and even load distribution. This reduces the risk of premature wear and ensures optimal performance.

  • 5. Challenge: Inadequate Lubrication:

If the linear bearings are under-lubricated or over-lubricated, it can lead to increased friction and wear.

  • Solution: Lubrication Management:

Monitor and manage lubrication levels to ensure they are within the recommended range. Regularly assess the lubricant’s condition and replenish as needed to maintain optimal performance.

  • 6. Challenge: High Loads and Speeds:

High loads and speeds can increase friction and wear on linear bearings.

  • Solution: Proper Selection:

Select linear bearings that are designed to handle the specific loads and speeds of the application. This ensures that the bearings can operate effectively under the given conditions.

Addressing friction and wear challenges in linear bearings requires a combination of proper maintenance practices, appropriate lubrication, protective measures, and careful selection of bearings. By implementing these solutions, the performance and longevity of linear bearings can be optimized.

linear bearing

Managing Contamination and Debris in Linear Bearings

Contamination and debris pose significant challenges to the proper functioning of linear bearings. However, various measures are employed to effectively manage these issues:

  • Preventive Sealing:

Linear bearings are often equipped with protective seals that act as barriers against contaminants. These seals prevent dust, dirt, and other particles from entering the bearing housing, thus reducing the risk of contamination.

  • Shielding:

Linear bearings can incorporate shields that offer an additional layer of protection against debris. Shields are designed to keep larger particles away from the bearing’s rolling elements, enhancing the bearing’s longevity.

  • Wipers and Scrapers:

Some linear bearings feature wipers or scrapers that actively remove debris from the bearing’s moving parts. These components help prevent the accumulation of contaminants that could compromise performance.

  • Regular Maintenance:

Periodic inspection and cleaning are crucial to maintaining the cleanliness of linear bearings. Routine maintenance procedures help identify and remove any foreign particles that may have entered the bearing housing.

  • Clean Environment:

Creating a clean operating environment is essential. In applications where contamination is a concern, steps are taken to minimize the presence of dust, dirt, and other pollutants in the vicinity of the linear bearings.

  • Proper Lubrication:

Lubrication not only reduces friction but also creates a barrier against contaminants. The lubricant can help prevent particles from adhering to bearing surfaces, facilitating their removal during maintenance.

  • Regular Inspections:

Frequent visual inspections can help identify early signs of contamination. Timely detection allows for prompt cleaning and maintenance, preventing further damage.

  • Appropriate Sealing Materials:

Using high-quality sealing materials that are resistant to wear and tear is essential. The right materials can effectively keep contaminants out while withstanding the operating conditions.

  • Choosing Suitable Environment:

Where possible, placing linear bearings in environments with lower levels of contamination or installing additional protective measures can help manage debris-related challenges.

By implementing these strategies, engineers and operators can effectively manage the challenges associated with contamination and debris, ensuring the optimal performance and longevity of linear bearings.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China supplier 1688 Asian Standard Precision Linear Bearing Flange Bearings Can Be Used for Precision Machinery Printing Presses and Other Motorcycle Accessories   bearing driverChina supplier 1688 Asian Standard Precision Linear Bearing Flange Bearings Can Be Used for Precision Machinery Printing Presses and Other Motorcycle Accessories   bearing driver
editor by CX 2024-05-02

China manufacturer Factory Supply Precision Linear Bearing Lm Lme Lmk Lmf Lmh Kh Series Square Flange Sliding Bearing for Shaft CNC Linear Motion System bearing and race

Product Description

BEARING RING

INCXIHU (WEST LAKE) DIS.INNERRING AND OUTERRING.MADE OF HIGHOUALITY STEELEFFICIENTEXTENSION OF BEARING LIFE.
ROLLING ELEMENTTRANSFERTHE LOAD BETWEENTHE INNERAND OUTERRINGS.

STEELBALLCAGE

REDUCE FRICTIONHEAT,OPTIMIZELOAD AND FAXIHU (WEST LAKE) DIS.TATE DISASSEMBLY

INTEGRAL SEAL

SIGNIFICANTLYEXTEND THE SERVICE LIFE OF BEARINGS,KEEPLUBRICANTSIN BEAR-NGS AND KEEP CONTAMINANTS OUT

Q:Are you trading company or manufacturer?
A:We are professional manufacturer for steel pipes,and our company also is a very protessional and technical foreign trade company for steel products. We have more export expenence with compettive price and best after-sales service Apart from this,we can provide a wide range of steel products to meet the requirement of customer.

Q:Can you send samples?
A:Of course, we can send samples to all parts of the world, our samples are free, but customers need to bear the courier costs.

Q:About product prices?
A:Prices vary from period to period due to cyclical changes in the price  of raw materials. 

Q:How long does your delivery time take?
A:In general, our delivery time is within 7-25 days, and may be delayed if the demand isextremely large or special circumstances occur.

Q:Does the product have quality inspection before loading?
A:Of course, all our products are strictly tested for quality before packaging, and unqualified products will be destroyed.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Vacuum, Magnetically, Low Temperature, Corrosion Resistant, High Temperature, High Speed
Function: Super
Flange Shape: Cutting-Edge
Shape: Open
Series: LM
Material: Bearing Steel
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Slides

Linear bearings play a crucial role in ensuring the smooth movement and operation of industrial conveyors and linear slides. Their contributions are as follows:

  • Reduced Friction:

Linear bearings are designed to minimize friction between moving components, facilitating smooth motion of conveyors and linear slides. This reduces wear and tear, energy consumption, and the need for frequent maintenance.

  • Precision Movement:

Linear bearings enable precise positioning and controlled movement. This precision is vital for conveyors and slides that require accurate placement of materials, products, or components.

  • Stability and Load Distribution:

Linear bearings distribute loads evenly across the bearing surface, enhancing stability and preventing uneven wear. This is especially important for conveyors that handle varying loads and linear slides that support heavy components.

  • Quiet and Vibration-Free Operation:

Linear bearings contribute to quiet and vibration-free operation. This is crucial in environments where noise reduction and minimal vibrations are essential for the comfort of operators and the integrity of products.

  • Efficient Energy Transfer:

Linear bearings ensure efficient energy transfer by reducing energy losses due to friction. This efficiency is particularly beneficial in systems where multiple conveyors or slides are connected, improving overall system performance.

  • Longevity and Reliability:

Linear bearings enhance the longevity and reliability of conveyors and slides by reducing wear on moving parts. This results in extended operational lifespans and reduced downtime for maintenance.

  • Flexibility and Customization:

Linear bearings come in various designs and sizes, allowing for customization to suit specific conveyor or slide requirements. This adaptability is valuable for accommodating different loads and motion profiles.

  • Wide Range of Industries:

Linear bearings find application in industries such as manufacturing, logistics, packaging, and material handling, where conveyors and linear slides are essential components of the workflow.

In summary, linear bearings contribute significantly to the efficient, precise, and reliable movement of industrial conveyors and linear slides. Their ability to reduce friction, ensure stability, and support heavy loads enhances the overall performance of these systems.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China manufacturer Factory Supply Precision Linear Bearing Lm Lme Lmk Lmf Lmh Kh Series Square Flange Sliding Bearing for Shaft CNC Linear Motion System   bearing and raceChina manufacturer Factory Supply Precision Linear Bearing Lm Lme Lmk Lmf Lmh Kh Series Square Flange Sliding Bearing for Shaft CNC Linear Motion System   bearing and race
editor by CX 2024-04-19

China manufacturer High Precision  auto parts Water Pump Bearings for Engine/motorcycle/tractor/wheel/linear/steel ball/Diesel generator/motorcycle bearing air

Product Description

 

Product Parameters

Automotive Bearing
Water Pump Bearings – WB Series                           (mm)
Bearing No. D L A d B C   Bearing No. D L A d B C
WB1224080 24 27 80 12.008 16.5 36.50    WB1630089D 30 30 88.6 15.918 14.2 44.40 
WB1224080-1 24 27 80.2 12.037 17.4 35.80    WB1630089D-1 30 27 89.3 15.918 21 41.30 
WB1630084 30 27 84 15.918 16 41.00    WB1630089D-2 30 30 88.8 15.918 14.3 44.50 
WB1630084-1 30 27 84 16 14 43.00    WB1630089D-3 30 38.9 89.15 15.918 16.72 33.53 
WB1630084-2 30 27.5 84.3 15.918 15.3 41.50    WB1630090 30 38.9 90.12 15.918 14.86 36.36 
WB1630084-3 30 38.9 84.33 15.918 14.34 31.09    WB1630090D 30 38.9 90.35 15.918 34.3 17.15 
WB1630084D 30 27 84.3 15.918 20.8 36.50    WB1630090D-1 30 27 90 15.918 15.5 47.50 
WB1630084D-1 30 27 84.38 15.918 20.57 36.81    WB1630090D-2 30 38.9 90 15.963 14.1 37.00 
WB1630084D-2 30 32.7 83.6 15.918 17.15 33.75    WB1630090D-3 30 38.9 90.17 15.918 15.46 35.81 
WB1630085 30 27 85 15.918 15 43.00    WB1630090D-4 30 28.45 89.81 15.918 45.87 15.49 
WB1630085-1 30 27 84.51 15.918 17.25 40.26    WB1630091 30 27.94 90.88 15.918 15.67 47.27 
WB1630085-2 30 27.94 84.51 15.918 17.37 39.20    WB1630091-1 30 27 91 15.918 41 43.00 
WB1630085-3 30 33.45 85.4 16 16.15 35.80    WB1630091D 30 38.9 91 15.963 12.1 40.00 
WB1630085D 30 27 84.63 15.918 17.27 40.36    WB1630091D-1 30 33 91 15.918 19.8 38.20 
WB1630085D-1 30 27 85 16 17 41.00    WB1630092 30 38.9 92 16 15.5 37.50 
WB1630085D-2 30 27 85 15.918 21 37.00    WB1630092D 30 38.9 91.8 15.918 36.9 16.00 
WB1630085D-3 30 27 85 15.918 17 41.00    WB1630092D-1 30 38.9 91.85 15.918 20.37 32.58 
WB1630085D-4 30 27 85 15.918 17 41.00    WB1630092DD 30 38.9 92.4 15.918 16.4 37.10 
WB1630085D-5 30 27.9 85 15.918 17 40.10    WB1630093 30 38.9 92.99 15.918 18.48 35.61 
WB1630085D-6 30 38.9 85.2 15.918 31.1 15.20    WB1630093D 30 38.9 92.46 15.918 16.48 37.08 
WB163 30 30 86.2 15.918 16.3 39.90    WB1630093D-1 30 38.9 92.5 15.918 16.5 37.10 
WB163 D 30 27 86.2 15.918 19.3 39.90    WB1630093D-2 30 38.9 92.58 15.918 16.42 37.26 
WB163 D-1 30 30 86 15.918 16.5 39.50    WB1630093DD 30 38.9 92.5 15.918 16.5 37.10 
WB1630087 30 30 86.5 15.918 12.3 44.20    WB1630093DD-1 30 38.9 92.5 15.918 16.49 37.11 
WB1630087D 30 30 87 15.918 15 42.00    WB1630093DD-2 30 38.9 92.51 15.918 16.6 37.01 
WB1630088 30 38.9 87.6 15.918 13.7 35.00    WB1630094 30 38.9 93.9 15.918 15.14 39.86 
WB1630088-1 30 38.9 87.5 15.918 15 33.60    WB1630094-1 30 38.9 94.35 15.918 17.5 37.95 
WB1630088-2 30 27 88 15.918 18 43.00    WB1630094D 30 38.9 93.9 15.918 16 39.00 
WB1630088-3 30 38.9 88 15.918 12.5 36.60    WB1630094D-1 30 27 94 15.918 16 51.00 
WB1630088D 30 27 88 15.918 18 43.00    WB1630094D-2 30 27 94 15.918 16 51.00 
WB1630088D-1 30 36.5 88 15.918 14 37.50    WB1630094D-3 30 30 94.18 15.918 16.38 47.80 
WB1630088D-2 30 36 87.5 15.918 13.5 38.00    WB1630095D 30 38.9 94.5 16 16 39.60 
WB1630089 30 36 88.75 16 19.25 33.50    WB1630096 30 27 96 15.918 17 52.00 
                             

Applications
  

Automobile Main Applications
Front Wheel Rear Wheel
Gearbox Differential Pinion Shaft
***Motorcycle parts and Car parts***

Packaging & Shipping

 

Company Profile

About Us
Focus on a variety of industries
Provide maintenance solutions
Optimize customer inventory and reduce cost

What We Do
Comprehensive product range:

– Bearings
– Oil seals, Transmission belt
– Chain and Sprocket
– Hub assembly & Wheel bearings
– Coupling, castings
– Linear motion

Our Advantages

1. We have the most advanced bearing process equipment, CNC automatic facilities, and testing instruments.
2. We manufacture ball bearings and mounted bearing units, and also provide a strong full range of products, including electric motors and components One-stop partnerships products from our audited supply chain.
3. All products are manufactured exclusively by companies with ISO 9001:2008 certified Quality Systems which use state-of-the-art machines. The quality path starts from the beginning to deliver and goods’ quality trackable
 

 

Advantage
Advanced Automatic Lines Comprehensive Range
Premium Quality Sustainability

Our Values
Behavior-based, service-oriented, focused on results and committed to continuous improvement

Factory
To be a leader in providing the best valuable (Reasonable cost, Reliable quality) supply of precision rollers.
Providing this value, will help our customers remain competitive in the global marketplace.
 

 

Please see detailed introduction about our manufacturing process and measuring process.

Advantage Manufacturing Processes and Quality Control:
01Heat Treatment
02 Centerless Grinding Machine 11200 (most advanced)
03 Automatic Production Lines for Raceway
04 Automatic Production Lines for Raceway
05 Ultrasonic Cleaning of Rings
06 Automatic Assembly
07 Ultrasonic Cleaning of Bearings
08 Automatic Greasing, Seals Pressing
09Measurement of Bearing Vibration (Acceleration)
10 Measurement of Bearing Vibration (Speed)
11 Laser Marking
12 Automatic Packing
 

Quality Warranty

Granville as a manufacturer of high quality products, guarantees compliance with the highest standards relative to the use of the best steel quality in the production process, the highest standards in the design of contact surfaces, as well as the most efficient packing and lubrication of parts. From material coming, quality control through all processes. Except interal test, goods to third party inspection if required. After the center of inspection and experiment being founded, effective methods of inspecting all kinds of raw materials are mastered and then the reliability of bearings is ensured. One of our main objectives is the continued improvement in the quality of our products and processes, in pursuit of which we obtained ISO certification 9001:2008 and TS16949. 

After Sales Service

  1. Optimize customer inventory and reduce cost
  2. Provide maintenance solutions

FAQ

Q1.Can you accept OEM and customization?
A: Yes. We can customize it according to the samples and drawings you provide.

Q2.Do you keep a stock of these things?
A: In stocks

Q3.Can you provide samples free of charge?
A: Yes. We can provide samples free of charge. But the freight is paid by the customer.

Q4.What’s the delivery date?
A:The delivery time of sample orders is 3 working days.The bulk orders are 5-10 working days.

Q5: Why your price is higher than others?
A: Price = quality . We firmly believe that by the quality of the customer is always get more reliable than on price . So we insist on doing high-quality products.

Q6:What kind of transport do you have ?
A: According to the weight,we will choose the most appropriate mode of transport for you. Our freight forwarding is efficient and cheap.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Provide maintenance solutions
Warranty: 1-3 years
Type: Brake Calipers/Brake Cylinders/Brake Drums
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Sample unit price depends on the specific model
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Managing Contamination and Debris in Linear Bearings

Contamination and debris pose significant challenges to the proper functioning of linear bearings. However, various measures are employed to effectively manage these issues:

  • Preventive Sealing:

Linear bearings are often equipped with protective seals that act as barriers against contaminants. These seals prevent dust, dirt, and other particles from entering the bearing housing, thus reducing the risk of contamination.

  • Shielding:

Linear bearings can incorporate shields that offer an additional layer of protection against debris. Shields are designed to keep larger particles away from the bearing’s rolling elements, enhancing the bearing’s longevity.

  • Wipers and Scrapers:

Some linear bearings feature wipers or scrapers that actively remove debris from the bearing’s moving parts. These components help prevent the accumulation of contaminants that could compromise performance.

  • Regular Maintenance:

Periodic inspection and cleaning are crucial to maintaining the cleanliness of linear bearings. Routine maintenance procedures help identify and remove any foreign particles that may have entered the bearing housing.

  • Clean Environment:

Creating a clean operating environment is essential. In applications where contamination is a concern, steps are taken to minimize the presence of dust, dirt, and other pollutants in the vicinity of the linear bearings.

  • Proper Lubrication:

Lubrication not only reduces friction but also creates a barrier against contaminants. The lubricant can help prevent particles from adhering to bearing surfaces, facilitating their removal during maintenance.

  • Regular Inspections:

Frequent visual inspections can help identify early signs of contamination. Timely detection allows for prompt cleaning and maintenance, preventing further damage.

  • Appropriate Sealing Materials:

Using high-quality sealing materials that are resistant to wear and tear is essential. The right materials can effectively keep contaminants out while withstanding the operating conditions.

  • Choosing Suitable Environment:

Where possible, placing linear bearings in environments with lower levels of contamination or installing additional protective measures can help manage debris-related challenges.

By implementing these strategies, engineers and operators can effectively manage the challenges associated with contamination and debris, ensuring the optimal performance and longevity of linear bearings.

linear bearing

Factors to Consider When Selecting a Linear Bearing

Choosing the right linear bearing for a specific application involves considering several critical factors to ensure optimal performance and longevity:

  • Load Requirements:

Determine the magnitude and direction of the loads the linear bearing will experience. Consider both static and dynamic loads to select a bearing with an appropriate load capacity.

  • Precision and Accuracy:

For applications requiring precise positioning, choose linear bearings with high precision and low backlash. Factors like repeatability and positional accuracy are crucial.

  • Speed and Acceleration:

Consider the speed and acceleration at which the linear bearing will operate. Higher speeds may require bearings with lower friction and better heat dissipation.

  • Environmental Conditions:

Assess the environmental factors such as temperature, humidity, and exposure to contaminants. Choose linear bearings with suitable materials and seals to withstand the conditions.

  • Space Constraints:

Take into account the available space for mounting the linear bearing. Some applications may have limited space, necessitating compact and lightweight bearing options.

  • Maintenance Requirements:

Consider the maintenance needs of the bearing. Bearings with self-lubricating properties or easy access for lubrication can reduce maintenance frequency.

  • Mounting and Configuration:

Choose a linear bearing that can be easily mounted and integrated into your system’s design. Consider factors like mounting orientation and available mounting surfaces.

  • Life Expectancy:

Estimate the expected lifespan of the linear bearing based on the application’s requirements. Select a bearing with a suitable design life to prevent premature failures.

  • Cost and Budget:

Balance the desired performance with the available budget. Opt for linear bearings that provide the necessary features without exceeding cost limitations.

  • Accessories and Add-ons:

Consider any additional accessories or add-ons, such as seals, lubrication systems, or end caps, that can enhance the bearing’s performance and protection.

  • Manufacturer and Supplier:

Choose reputable manufacturers and suppliers that offer reliable products and good customer support. Quality assurance and technical assistance are essential.

Overall, a comprehensive assessment of these factors will help you select the most suitable linear bearing for your specific application, ensuring optimal performance, longevity, and cost-effectiveness.

China manufacturer High Precision  auto parts Water Pump Bearings for Engine/motorcycle/tractor/wheel/linear/steel ball/Diesel generator/motorcycle   bearing airChina manufacturer High Precision  auto parts Water Pump Bearings for Engine/motorcycle/tractor/wheel/linear/steel ball/Diesel generator/motorcycle   bearing air
editor by CX 2024-04-12

China wholesaler Wj955 Professional Bearing Manufacturer Precision CNC Linear Bearing (LM/KH/ST series) with Best Sales

Product Description

Product Description

WHY CHOOSE E-ASIA BEARING?

1) 20 years of rich bearing industry export experience
2) ISO & MPA & CE & SGS & BV certified
3) Professional engineers team and Superior machines
4) 1 hour to HangZhou port or ZheJiang port
5) Strict quality inspection (3 steps) before shipment, such as SGS/BV third party certified.

CHOOSE E-ASIA       REFUSED ONE TIME BUSINESS

Deep groove ball bearing 5 88506 88507 88508A 88508 88509 622 62303 62304 62305 62306 62307 62308 62309 62310
Taper roller bearings 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35714 35716 35718 35710 35712 35714 35716 35710 35714 30302 30303 30304 30305 30306 30307 30308 3 3 0571 3 0571 3 0 30321 30322 30324 30326 30328 30330 30332 30334 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32224 32226 32228 32230 32232 32236 32238 32240 32244 32248 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32324 32326 32330 32334 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31324 31326 31328 31332 32 325714 320726 325718 53856k 53860
Self-aligning ball bearings
spherical plain bearing GE4E GE5E GE6E GE8E GE10E GE12E GE15ES GE17ES GE20ES GE25ES GE30ES GE35ES GE40ES GE45ES GE50ES GE60ES GE70ES GE80ES GE90ES GE1 110145 120155 130170 140180 150190 165710
Thrust ball bearing 511 234415 234416 234417 234418 234419 234420 234421 234422 234424 234426 234428 234430 234432 234438 234440 234714 234715 234716 234717 234718 234719 234720 234721 234722 234722 347262 347282 347302 347322 347382 34740
Cylindrical Roller Bearings NU313EMA NU2313EMA NU2314EMA NU415EMA NU216EMA NU2216EMA NJ2216EMA NUP2216EMA NU316EMA NU2316EMA NU217EMA NU2217EMA NU317EMA NU2317EMA NJ2317EMA NU218EMA NJ218EMA NU2218EMA NJ2218EMA NUP2218EMA NU318EMA NJ318EMA NU2318EMA NJ2318EMA NU219EMA NJ219EMA NU2219EMA NJ2219EMA NU319EMA NJ319EMA NU2319EMA NJ2319EMA NU220EMA NJ220EMA NU2220EMA NJ2220EMA NU320EMA NJ320EMA NU2320EMA NJ2320EMA NU222EMA NJ222EMA NU2222EMA NJ2222EMA NU322EMA NJ322EMA NU2322EMA NJ2322EMA NU1571MA NU224EMA NJ224EMA NU2224EMA NJ2224EMA NU324EMA NJ324EMA NU2324EMA NJ2324EMA NU1026MA NU226EMA NJ226EMA NU2226EMA NJ2226EMA NU326EMA NJ326EMA NU2326EMA NJ2326EMA NU1571MA NU228EMA NJ228EMA NU2228EMA NJ2228EMA NU328EMA NJ328EMA NU2328EMA NJ2328EMA NU1030MA NU230EMA NJ230EMA NUP230EMA NU2230EMA NJ2230EMA N2230EMB NU330EMA NJ330EMA NU2330EMA NJ2330EMA NU1032MA NU232EMA NJ232EMA NUP232EMA NU2232EMA NJ2232EMA NU332EMA NJ332EMA NU2332EMA NJ2332EMA NU1034MA NU3034EMA NU234EMA NJ234EMA NU2234EMA NJ2234EMA NU334EMA NJ334EMA NU2334EMA NJ2334EMA NU1036MA NU236EMA NJ236EMA NU2236EMA NJ2236EMA NU336EMA NJ336EMA NU2336EM NJ2336EMA NU1038MA NU238EMA NJ238EMA NU2238EMA NJ2238EMA NU338EMA NJ338EMA NU2338EMA NJ2338EMA NU1040MA NU240EMA NJ240EMA NU2240EMA NJ2240EMA NU340EMA NJ340EMA NU2340EMA NJ2340EMA NU1044MA NJ1044MA NU3044EMA NU244EMA NJ244EMA NU2244EMA NJ2244EMA NU344EMA NJ344EMA NU2344EMA NJ2344EMA N2344EMB NU1048MA NU248EMA NJ248EMA NU348EMA NJ348EMA NU2348EMA NJ2348EMA NU1052MA NU3052MA NU252MA NUP252MA NU2252MA NU2352EMA NU1056MA NU1060MA NU1964MA NF2964EMB NU1064MA NU2264MA NF2968EMB NU1068MA NU3068EMA NU3168EMA NU2372EMA NU1072MA NU1076MA NJ2980EMA NU1080MA NU2080EMA NF2984EMB NU1088MA NU2088EMA NU3188EMA NJ2892EMA NF2992EMB NU3192EMA NU1096EMA NJ1096EMA NU31/500EMA NU18/560MA NU30/600EMA NU20/630EMA NU20/670EMA NU20/670EMA NU30/670EMA NJ28/710EMA NJ29/710MA NU20/750EMA NU20/800EMA NU20/850EMA NU39/900EMA NU20/900EMA NJ18/1120EMA105RU32 105RN32 105RJ32 105RF32 105RT32 170RU51 170RN51 170RJ51 170RF51 170RT51 170RU91 170RN91 170RJ91 170RF91 170RT91 170RU93 170RN93 170RJ93 170RF93 170RT93 180RU51 180RN51 180RJ51 180RF51 180RT51 180RU91 180RN91 180RJ91 180RF91 180RT91 190RU91 190RN91 190RJ91 190RF91 190RT91 190RU92 190RN92 190RJ92 190RF92 190RT92 200RU91 200RN91 200RJ91 200RF91 200RT91 200RU92 200RN92 200RJ92 200RF92 200RT92 210RU92 210RN92 210RJ92 210RF92 210RT92 220RU51 220RN51 220RJ51 220RF51 220RT51 220RU91 220RN91 220RJ91 220RF91 220RT91 220RU92 220RN92 220RJ92 220RF92 220RT92 240RU91 240RN91 240RJ91 240RF91 240RT91 250RU91 250RN91 250RJ91 250RF91 250RT91NCF2922V NCF2924V NCF2926V NCF2928V NCF2930V NCF2932V NCF2934V NCF2936V NCF2938V NCF1840V NCF2940V NCF1844V NCF2944V NCF1852V NCF2952V NCF2960V NCF1864V NCF2964V NCF1868V NCF1876V NCF2976V NCF1880V NCF1884V NCF1888V NCF1892V NCF2992V NCF2996V NCF18/500V NCF29/500V NCF18/530V NCF18/560V NCF18/600V NCF18/630V NCF18/670V NCF18/710V NCF18/750V NCF18/800VNNU4930MAW33 NNU4932MAW33 NNU4934MAW33 NNU4936MAW33 NNU4938MAW33 NNU4940MAW33 NNU4140MAW33 NNU4944MAW33 NNU4144MAW33 NNU4948MAW33 NNU4148MAW33 NNU4952MAW33 NNU4152MAW33 NNU4956MAW33 NNU4156MAW33 NNU4960MAW33 NNU4160MAW33 NNU4964MAW33 NNU4164MAW33 NNU4968MAW33 NNU4068MAW33 NNU4168MAW33 NNU4972MAW33 NNU4072MAW33 NNU4172MAW33 NNU4976MAW33 NNU4076MAW33 NNU4176MAW33 NNU4980MAW33 NNU4080MAW33 NNU4180MAW33 NNU4984MAW33 NNU4084MAW33 NNU4184MAW33 NNU4988MAW33 NNU4088MAW33 NNU4188MAW33 NNU4992MAW33 NNU4092MAW33 NNU4192MAW33 NNU4996MAW33 NNU4096MAW33 NNU4196MAW33 NNU49/500MAW33 NNU40/500MAW33 NNU49/530MAW33 NNU40/530MAW33 NNU49/560MAW33 NNU49/600MAW33 NNU49/630MAW33 NNU49/670MAW33 NNU40/670MAW33 NNU49/710MAW33 NNU49/750MAW33 NNU49/800MAW33 NNU49/850MAW33 NNU49/900MAW33
 

Company Profile

        E-Asia was set up in 1996 and located at HangZhou, a beautiful city in China. Our company is bearing manufacturer and NSK CZPT CZPT CZPT CZPT HRB LYC NACHI C&U bearing distributor. We also provide OEM beaings.Since it was first established, E-AISA was dedicated in research, development and manufacture of bearings. Now, E-AISA has become main and 1 of the first grade suppliers of all kinds of bearings.
          Our products include: Deep Groove Ball Bearings, Self-aligning Ball Bearings, Spherical Bearings, Tapered Roller Bearings,Cylindrical Roller Bearings, Needle Roller Bearings, Self-aligning Roller Bearings, Angular Contact Ball Bearings, Thrust Ball Bearings and Trust Roller Bearings and Special Bearings.
        E-Asia is a backbone enterprise for bearing production in China. With an area of 60, 000 square meters, more than 260 sets devices and machines, and around 200 employees, our company annually turns out more than 6 million sets bearings.

        Our Bearings are exported to the USA, Canada, UK, Germany, Poland, Italy, Russia, the Middle East, Africa and other countries and regions of the world. E-Asia Bearing Co. Ltd. Is committed to the introduction of high-quality bearing products. Our company have more than 200 employees.
        Our brands include ZWZ bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings and so forth.

 
Our belief is “Specialization is quality; Quality is the future. Any product with 0.01% defect is 100% reject” is our quality policy.

Packaging & Shipping

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
Most orders will be shipped within 3-5 days of payment being received.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
Do our best to meet customer needs, negotiable.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, account or account, we will contact you as soon as possible and provide the detailed information you need.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Auto Clutch Bearing
Material: Chrome Steel
Tolerance: P5
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Design Principles and Functionalities of Linear Bearings

Linear bearings are designed with specific principles to facilitate controlled linear motion along a single axis. These design principles contribute to their functionalities, making them essential components in various applications:

  • Rolling Elements:

Linear bearings typically feature rolling elements, such as balls or rollers, that move along a track or rail. These rolling elements reduce friction and enable smooth linear motion.

  • Guiding Mechanism:

Linear bearings incorporate a guiding mechanism to constrain the motion to a single axis. This guiding mechanism ensures that the linear bearing moves precisely along the desired path.

  • Load Distribution:

The design of linear bearings allows for effective distribution of loads, both in the radial and axial directions. This load distribution ensures stability and prevents excessive stress on individual components.

  • Rail or Track:

Linear bearings typically run along a rail or track that provides a smooth and accurate path for the rolling elements. The rail is designed to resist wear and maintain its precision over time.

  • Cage or Carriage:

Linear bearings use a cage or carriage to house the rolling elements and maintain their proper spacing. This arrangement ensures even load distribution and smooth movement.

  • Sealing and Lubrication:

Linear bearings often incorporate sealing mechanisms to protect the rolling elements from contaminants and to retain lubrication. Proper lubrication ensures smooth motion and extends the bearing’s lifespan.

  • Mounting Options:

Linear bearings are designed to be mounted in various ways, depending on the application’s requirements. Mounting options include flange-mounted, base-mounted, or end-supported configurations.

  • Adjustability:

Many linear bearings are designed with provisions for adjustment, allowing users to fine-tune the preload or clearance to optimize performance and minimize play.

  • Materials:

Linear bearings are constructed from materials that offer high wear resistance, durability, and corrosion resistance. Common materials include steel, stainless steel, and various engineering plastics.

  • Accessories:

Accessories such as end caps, seals, and lubrication systems can enhance the functionality and lifespan of linear bearings by providing protection and ensuring proper maintenance.

Functionalities of linear bearings include providing precise linear motion, guiding components along a defined path, minimizing friction, distributing loads, and maintaining stability. The design principles ensure reliable operation and make linear bearings indispensable in applications requiring controlled and accurate linear motion.

China wholesaler Wj955 Professional Bearing Manufacturer Precision CNC Linear Bearing (LM/KH/ST series)   with Best SalesChina wholesaler Wj955 Professional Bearing Manufacturer Precision CNC Linear Bearing (LM/KH/ST series)   with Best Sales
editor by CX 2024-04-10

China Custom CZPT High Precision Mechanical Linear Parts Angular Contact Ball Screw Bearing 760326tn1 ball bearing

Product Description

ZYS high precision mechanical linear parts angular contact ball screw bearing 760326TN1

Product Description

Ball screw bearings can withstand large axial loads in a single direction, and can also withstand a certain radial load at the same time. Ball screw support bearings usually need to be used in double or multiple combinations, and the matching method is the same as angular contact ball bearings. CZPT can offer ISO metric ball screw bearings and non-ISO metric ball screw bearings, which are widely used for precision instruments and ball bearing lead screws. 

Ball screw bearings can withstand large axial loads in a single direction, and can also withstand a certain radial load at the same time. Ball screw support bearings usually need to be used in double or multiple combinations, and the matching method is the same as angular contact ball bearings.

ZYS ball screw bearing is a one-way angular contact thrust ball bearing with contact angle of 60°. It has good performance of high precision, high speed, high axial stiffness, low friction, long life and high&low speed transition conversion. CZPT ball screw bearing is particularly suitable for ball bearing lead screw and similar transmission components in high speed precision CNC machine tools.

ZYS ball screw thrust bearings have 7602 and 7603 series, which are standard metric with internal diameters from 12mm to 130mm in accordance with JB/T8564 standard. 

Product Parameters

Precision Matching of Ball screw bearings:

CZPT precision angular contact ball bearings can be supplied by assemble sets with two, three, 4 or 5 bearings to form a complete bearing group. The elements of bearing group are produced by matching requirement, so that the bearings can get the predetermined preload and rigidity after installation. The inner and outer diameter and angle of the same bearing group shall be controlled within the allowable tolerance. For bearings with special requirement, the tolerance will be even smaller.

Technical parameters of ZYS ball screw bearings 

Bearing model Dimensions (mm) Rated load (KN) Limit speed
 (r/min)
MAX axial 
load (KN)
Preload 
(KN)
Friction 
torque 
(N.mm)
Weight 
 (kg)
  d D B rsmin a Ca Coa Grease        
765711 12 32 10 0.6 24 11.6 12.5 17000 5.2 1.4 15 0.04
765712 15 35 11 0.6 27 12.5 15 15000 6.3 1.4 20 0.05
765713 17 40 12 0.6 31 16.6 20 13000 8.5 1.7 30 0.07
765714 20 47 14 1.0 36 19.3 25 12000 10.6 2.3 50 0.13
765715 25 52 15 1.0 41 22 30.5 11000 13.2 2.5 65 0.16
765716 30 62 16 1.0 48 26 39 9000 17.0 2.9 85 0.24
765717 35 72 17 1.1 55 30 50 8000 21.2 3.3 115 0.34
765718 40 80 18 1.1 62 37.5 64 7000 28.0 4.3 170 0.44
765719 45 85 19 1.1 66 38 68 6700 28.0 4.5 190 0.50
765710 50 90 20 1.1 71 39 75 6300 31.5 4.6 230 0.57
765711 55 100 21 1.5 78 40.5 81.5 6000 33.5 4.9 250 0.75
765712 60 110 22 1.5 86 56 112 5000 47.5 6.5 350 0.96
765713 65 120 23 1.5 92 57 122 4800 50.0 7.0 410 1.20
765714 70 125 24 1.5 96 65.5 137 4500 56.0 7.0 440 1.32
765715 75 130 25 1.5 101 67 150 4300 63.0 7.6 480 1.45
765716 80 140 26 2.0 108 76.5 175 4000 75.0 8.9 600 1.76
765717 85 150 28 2.0 116 86.5 196 3800 85.0 10.5 760 2.19
765718 90 160 30 2.0 123 98 224 3600 100 11.0 790 2.69
765719 95 170 32 2.1 131 110 255 3400 112 12.5 950 3.26
765710 100 180 34 2.1 138 122 285 3200 125 14.0 1100 3.91
765712 110 200 38 2.1 153 146 355 2800 153 16.4 1400 5.5
765714 120 215 40 2.1 165 176 425 2600 185 20.6 2000 6.5
765716 130 230 40 3.0 176 180 455 2400 200 20.6 2100 7.4
760304 20 52 15 1.1 39 24.5 32 11000 14.0 2.9 60 0.17
760305 25 62 17 1.1 46 28.5 41.5 9000 18.0 3.3 85 0.28
760306 30 72 19 1.1 53 34.5 55 8000 23.6 4.3 130 0.41
760307 35 80 21 1.5 60 36.5 61 7000 26.5 4.8 170 0.55
760307X3 35 90 23 1.5 68 50 83 6300 35.5 5.6 225 0.81
760308 40 90 23 1.5 68 50 83 6300 35.5 5.6 225 0.76
760309 45 100 25 1.5 75 58.5 104 5600 45.0 7.0 300 1.02
760309X3 45 110 27 2.0 83 69.5 127 5000 53.0 7.6 360 1.41
76571 50 110 27 2.0 83 69.5 127 5000 53.0 7.6 360 1.33
76571 55 120 29 2.0 90 78 146 4800 63.0 8.8 460 1.69
76571 60 130 31 2.1 98 88 166 4500 75.0 10.0 540 2.12
76571 65 140 33 2.1 1.5 100 196 4000 90.0 12.0 700 2.60
76571 70 150 35 2.1 113 110 220 3800 95.0 12.0 760 3.16
76571 75 160 37 2.1 120 125 255 3600 118.0 14.5 920 3.79
76571 80 170 39 2.1 128 137 285 3400 132.0 16.0 1100 4.50
760320 100 215 47 3.0 160 193 430 2600 212.0 21.5 1700 8.73
760322 110 240 50 3.0 176 250 560 2400 265.0 29.3 2500 11.8
760324 120 260 55 3.0 192 265 620 2200 280.0 31.3 2750 14.6
760326 130 280 58 3.0 206 290 695 2000 305.0 33.7 3100 18.7

Application of ZYS ball screw bearings :
Typical Applications: electric motors, fork lift trucks, pumps, textile machinery, transmissions, wire CZPT & spring machinery, medium belt conveyors, wood working machineries, and so on.

Aviation Cargo Systems Industrial Mixers & Shakers
Aerospace CZPT Actuators Intrusion Detection Systems
Anemometer Material Handling Rollers
ATMs & Card Readers Medical Actuator
Bicycles Medical Diagnostic Equipment
Commercial Blenders Medical Imaging Equipment
Dental Hand Tools Medical Laser Surgery
Electrical Motors Medical Surgical Tools
Engines Off Highway Cranes
Escalators and Elevators Optical Encoders
Fishing Reels Plastic Card Printers
Flight Support Systems Power Hand Tools
Flow Meters Printing Rollers
Galvanometers Roller Doors
Gas Engine Pull Start Assembly Scissor & Platform Lifts
Gas Meters Sensors & Potentiometers
Gas Powered Motors Solar Panels Actuators

 

Our Advantages

ZYS Precision Bearing Quality Control and Assurance:

Austrian AICHELIN heat treatment equipment and long-life heat treatment process provide a strong guarantee for the continuous and reliable operation of bearings.

 

Certifications

ZYS Quality assurance 

 

Company Profile

HangZhou Bearing Research Institute Co., Ltd. (ZYS) is the only state level comprehensive research institute in China’s bearing industry since 1958. CZPT has total assets of 2.06 billion RMB, owns one research and development center, 3 industrial bases. CZPT has advanced bearing manufacturing equipments and world firstclass testing equipments and have solid strength in manufacturing, measuring and testing of bearing and related components with high precision and high reliability to perform batch production of various high-rank bearing products and components with inner diameter of 0.6mm to outer diameter of 6.8m. 

HangZhou Bearing Research Institute Co., Ltd. is a high-tech enterprise specializing in the development of “high-rank, precise, advanced, unique, special” bearing products for the key units in various fields of national economic construction. Its predecessor, HangZhou Bearing Research Institute, was established in 1958. It is the only state-level comprehensive research institute in China’s bearing industry. In 1999, it entered China National Machinery Industry Group Co., Ltd. and transformed into a science and technology enterprise.

We focus on developing high performance bearing products for key units of national economic construction. We perform batch production of various high rank bearing products and components with inner diameter of 0.6mm to outer diameter of 6.8m. We are mainly engaged in the research, development, production and sales of precision bearing, special bearing, high speed machine tool spindle, bearing special equipment, bearing testing instruments, bearing testing machine and bearing special materials, which are widely used in the fields of aerospace, machine tools, wind power generation, mine metallurgy, petrochemical, medical equipment, automobiles and rail transit, construction machinery, intelligent manufacturing services, etc.

We have total assets of 2.06 billion RMB, own one research and development center, 3 industrial bases and cover an area of more than 47 hectares. We have advanced bearing manufacturing equipments and world first-class testing equipments and have solid strength in manufacturing, measuring and testing of bearing and related components with high precision and high reliability. We have more than 380 technical staff of bearing related disciplines, thus we maintain a leading position in the aspects of bearing design, basic theoretical research, lubrication technology, metallic and non-metallic materials, testing and industry standards. 
 

FAQ

Q: Are you trading company or manufacturer?
A: CZPT is bearing manufacturer, the only first-class comprehensive research institute in China bearing industry.

Q: How do you control quality of bearing?
A: CZPT has established quality control systems for each kind of bearing and spindle. All products and services passed ISO9001-2008 Quality Certificate.

Q: What is the MOQ?
A: It depends on the bearing type. You can send inquiry or send e-mail  for more information.

Q: How about the package?
A: Industrial packing in general condition (Plastic tube+ carton+ pallet). Accept design package when OEM.

Q: How long is the delivery time?
A: It will take about 10 to 40 days, depends on the model and quantity.

Q: How about the shipping?
A: We can arrange the shipment or you may have the forwarder.

Q: Is sample avaiable?
A: Yes, sample order is acceptable.

Q: Can we use our own LOGO or design on bearings?
A: Yes. OEM is acceptable. We can design the bearing with your requirements and use your own LOGO and package design.

 

Contact us

 
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 60°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Thrust Bearing
Material: Bearing Steel
Customization:
Available

|

Customized Request

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Linear Slides

Linear bearings play a crucial role in ensuring the smooth movement of industrial conveyors and linear slides by providing low-friction support and guiding mechanisms. Here’s how linear bearings contribute to their operation:

  • Smooth Motion: Linear bearings offer precise and smooth linear motion to conveyors and linear slides, allowing materials or objects to move seamlessly along a defined path.
  • Low Friction: The design of linear bearings minimizes friction between the moving parts, reducing energy consumption and wear. This is particularly important for conveyors and slides that require frequent and continuous movement.
  • Guidance: Linear bearings guide the movement of the conveyor belts or linear slides, ensuring that they stay on track and follow the desired path without deviation.
  • Load Support: Linear bearings provide support for both radial and axial loads, allowing conveyors to carry heavy loads and linear slides to accommodate objects or components without sacrificing smoothness.
  • Precision: Linear bearings offer high precision and accuracy, which is essential for applications where precise positioning is required, such as in automated manufacturing processes.
  • Reduced Noise and Vibration: Linear bearings contribute to quieter operation by reducing noise and absorbing vibrations generated during movement. This is beneficial in environments where noise reduction is important.
  • Longevity: By minimizing friction and wear, linear bearings enhance the longevity of conveyors and linear slides, reducing the need for frequent maintenance and replacement.

In industrial settings, linear bearings ensure that conveyors efficiently transport materials, products, or components, while linear slides provide controlled and accurate movement for various applications. Whether in manufacturing, logistics, or automation, the use of linear bearings results in enhanced efficiency, reduced downtime, and improved overall performance.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China Custom CZPT High Precision Mechanical Linear Parts Angular Contact Ball Screw Bearing 760326tn1   ball bearingChina Custom CZPT High Precision Mechanical Linear Parts Angular Contact Ball Screw Bearing 760326tn1   ball bearing
editor by CX 2024-04-10

China wholesaler Industrial Automation High Precision Linear Bearing for Replacement CZPT Linear Transmission deep groove ball bearing

Product Description

Industrial Automation High Precision Linear Bearing for replacement Hiwin linear transmission: high-torque SG serias

Our Partners

FAQ

Q: Could you provide sample?
A: Yes,we could .
Q: What is your MOQ?
A: 1 pc is available.
Q: Do you have any replaceable types of Hiwin, THK, IKO,etc?
A: Yes, we will check our replaceable types as per Hiwin, THK,IKO and other brands types.
Q: What is your delivery time ?
A: About 5-7 days after receiving the payment.
Q:Is customization available?
A:Yes.Our customized service is available.

Our Commitments
  All products have passed rigorous factory test to ensure high quality.
  We own patented products and SGS,ISO certifications.
  High-efficiency assembly and production lines ensure on-time delivery.

Detailed Photos

Company Profile

Certifications

Exhitions

Application

Our Advantages

Pre sale service:
▽  Technical communication with engineer.
▽  Factory visit.
▽  Making customized drawings patiently.

After sale service:
▽  Overseas and spare part support.
▽  Technical and spare parts support.
▽  ODM, OEM service 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane
Material: Steel
Driven Type: Hydraulic
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

290000PCS/Month

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Challenges and Solutions for Addressing Friction and Wear in Linear Bearings

Friction and wear are common challenges in linear bearings that can impact their performance and lifespan. Here are the challenges and some solutions to address them:

  • 1. Challenge: Friction:

Friction between the bearing components can lead to increased energy consumption, heat generation, and reduced efficiency.

  • Solution: Lubrication:

Proper lubrication is essential to minimize friction. Lubricants reduce the contact between moving parts, allowing smoother motion and reducing wear. Choosing the right lubricant and applying it correctly can significantly mitigate friction-related issues.

  • 2. Challenge: Wear:

Continuous movement can lead to wear on the bearing surfaces, affecting precision and performance over time.

  • Solution: Regular Maintenance:

Implementing a regular maintenance schedule can help monitor wear and replace worn components before they compromise performance. This includes cleaning, re-lubrication, and periodic inspection of the bearing’s condition.

  • 3. Challenge: Contaminants:

Dust, debris, and foreign particles can enter the bearing system, leading to increased friction and accelerated wear.

  • Solution: Sealing and Protection:

Using seals, covers, or protective enclosures can help prevent contaminants from entering the bearing system. These protective measures maintain the integrity of the lubricant and extend the bearing’s lifespan.

  • 4. Challenge: Improper Installation:

If linear bearings are not installed correctly, misalignment and uneven load distribution can contribute to friction and wear.

  • Solution: Precise Installation:

Follow manufacturer guidelines for proper installation, ensuring accurate alignment and even load distribution. This reduces the risk of premature wear and ensures optimal performance.

  • 5. Challenge: Inadequate Lubrication:

If the linear bearings are under-lubricated or over-lubricated, it can lead to increased friction and wear.

  • Solution: Lubrication Management:

Monitor and manage lubrication levels to ensure they are within the recommended range. Regularly assess the lubricant’s condition and replenish as needed to maintain optimal performance.

  • 6. Challenge: High Loads and Speeds:

High loads and speeds can increase friction and wear on linear bearings.

  • Solution: Proper Selection:

Select linear bearings that are designed to handle the specific loads and speeds of the application. This ensures that the bearings can operate effectively under the given conditions.

Addressing friction and wear challenges in linear bearings requires a combination of proper maintenance practices, appropriate lubrication, protective measures, and careful selection of bearings. By implementing these solutions, the performance and longevity of linear bearings can be optimized.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China wholesaler Industrial Automation High Precision Linear Bearing for Replacement CZPT Linear Transmission   deep groove ball bearingChina wholesaler Industrial Automation High Precision Linear Bearing for Replacement CZPT Linear Transmission   deep groove ball bearing
editor by CX 2024-04-04

China Good quality Precision Instrument Cylindrical Roller Bearing CNC Machining Stainless Steel Linear Bearing Wheel Hub Bearing connecting rod bearing

Product Description

Product Description

Product Description:

Type • Single Row Four Point Contact Ball Slewing Bearing 
• Single Row Crossed Cylindrical Roller Slewing Bearings
• Double Row Ball Slewing Bearings
•Double Row Roller/Ball Combination Slewing Bearing
•Three-Row Roller Slew Ring Bearing
Rolling elements Steel ball / Cylinder Roller
Rolling elements Material GCr5/GCr15SiMn/Customized
Bearing Material 50Mn/42CrMo/42CrMo4V /Stainless Steel,Alu,Customized
Cage Material Nylon 1571/ Steel /Brass
Structure Taper pin , Mounting holes,Inner ring ,Grease fitting,Load plug, Seals , Roller ,Spacer Balls or separators
Outer diameter 50-10000mm
Bore size 50-10000mm
Mounting hole Through Hole/Tapped hole/Counterbore
Raceway hardness 55-62HRC
Inner and outer ring 
modulation hardness
229-269HB/Customized
Gear type No gear ,Internal gear , External gear.
Embellish grease EP2 lithium lubricating grease
Certificate ABS.BV,DNV,ISO9001,GL,3.1,3.2
Application area Ladle turret,Stacker crane,Bucket wheel machine,Solar heliostat Tracking System,port crane, Cabling machine,tower crane , off shore platform,ferris wheel, Palletizing robot,Rotary metallurgical furnace,can packing machine,Wind blade transporter,shield tunneling machine,tube push bench,excavator
Brand Name SoCare-MSI
Place of Origin China
Warranty 18 months
Payment term T/T is our first choice

Packing details

1,Filling with anti-rust oil
2.Corved with Plastic paper
3.Corved with kraft paper 
4.Corved with Blue tie 
5.Put in wooden box

Slewing ring bearings are large-size rolling bearings that can accommodate axial, radial and moment loads acting either singly or in combination and in any direction .They can perform both slewing (oscillating) movements as well as rotational movements. A slewing ring bearing consist of an inner ring, an outer ring and rolling elements (balls or cylindrical rollers) that are separated by polyamide spacers .The rings, 1 of which usually incorporates a gear ,are provided with holes to accommodate attachment bolts. The holes may be threaded. Generally , only the raceways in the rings are hardened and precision-ground.Integral seals made of acrylonitrile-butadiene rubber (NBR) keep the lubricant in, and contaminants out of the bearing. Slewing ring bearings are re-lubricated through grease fittings to reduce maintenance and operating costs.

Compared to traditional pivot arrangements, slewing ring bearing arrangements provide many design and performance advantages. The compactness and large inner diameter simplify the design of the bearing arrangement and its associated components .The low sectional height of these bearings means that the pinion lever can be kept short. In most cases only flat mounting surfaces on the associated components are needed.

Slewing ring bearings were originally designed to be mounted only on horizontal support structure, but can now be used successfully in vertical bearing arrangements .

Slewing ring bearings perform extremely well in a variety of applications such as:
¤ Access platforms
¤ Bucket wheel excavators
¤ Conveyor booms
¤ Cranes of all type
¤ Small ,medium and large excavators
¤ InHangZhou tables
¤ Ladle turrets
¤ Offshore applications
¤ Robots
¤ Railway bogies
¤ Rotary platforms
¤ Stackers
¤ Solar mirrors
¤ Tunnel boring machines
¤ Wind turbines

Introduction

SCB-TR Tri-Roller Bearings

Increased stiffness and capacity over SCB-XR and SCB-DT

OD size range up : 48″- 275″

Construction

-Three separate rows of rollers

-Top and bottom rollers transmit thrust and moment load

-Middle roller transmits radial loading

-Sealed

-Ring Configuration:

Non geared

External gear

Internal gear

-Grease fittings for lubrication

Applications

-Mining

-Stackers and reclaimers

-Heavy equipment

-Cranes

-Radar

-Boring machines

Company Profile

Company  Profile:

                              About SoCare :
The SoCare  brand is synonymous with quality.
Now, we have become an even greater resource for our business partners. Due to embracing technical advances, product support, and service, we have become a truly solutions-oriented supplier.

SoCare  is creating greater value for our partners.

These advances all work together to bring our customers the added benefit of higher productivity. In addition, we provide application specific products, leading edge design simulation tools, on sight engineering support, plant asset efficiency programs, and advanced supply chain management.
             With SoCare  you can expect more!

Application: 
Slewing ring bearings can be widely used in lifting & transport machinery, mining machinery, construction machinery, port hoisting machinery, port oil transfer equipment, onshore and offshore crane, excavator, concrete machine, paper machine, plastic and rubber machine, weave machine, steel plant, electronic power plant, wind power generator, other construction and industry machines or equipments and other large rotary device.

Packaging & Shipping

Packing & Shipping:

Bearing surface is covered with the anti-rust oil first; and then wrapped with the plastic film;

And then packed with kraft paper and professional belts;

At last, with wooden box totally at the outer packing to invoid the rust or the moist;

We can depend on the customers  demand to be packed.

 

After Sales Service

Our Service:
♥1.Your inquiry will be reply within 2 hours.

♥2.Fast delivery,within 15 working days.

♥3.Packing: you will receive a Perfect product with strong outside packing.

♥4.With advanced first-level facilities and testing equipment,to insure no mistake on the dimension of the bearings.

♥5.MOQ is 2 sets, Because we are manufacturer.

♥6.24 hours on line,no limited to talk to us.

♥7.Return Policy:We gladly accept returns for item purchased within a 15 day period, provided it is still in the original package, not used nor damaged.

♥8.Warranty Claims :The Warranty covers any Defect of the product for a period of 18 months. It does not cover items that are not correctly installed or over tightened which may cause premature failure. Installation or any other fee’s are not refundable.

FAQ

FAQ:

1.Q: Are you trading company or manufacturer ?
A: We are a manufacturing enterprise focusing on bearings and integrating research, production and sales with 20 years’ experience.

2.Q: How long is your delivery time?
A: Generally it is 7 days if the goods are in stock. or it is 15 days if the goods are not in stock, Also it is according to quantity.

3.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.

4.What are the company’s delivery terms?
A:We can accept EXW,FOB,CFR,CIF,etc. You can choose the 1 which is the most convenient cost effective for you.

5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.

6.How many the MOQ of your company?
A:Depending on the size of the bearing, the MOQ is variable, if you are interested, you can contact me for a quote.

7.Does the company accept OEM or customized bearings?
A:In addition to standard products, we also supply non-standard and modified standard products for special application. Meanwhile, we provide OEM service.

8.Can the company provide free samples?
A:We can provide samples for free. You only need to provide shipping.

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Spherical Raceway
Material: Alloy
Samples:
US$ 0/Set
1 Set(Min.Order)

|
Request Sample

linear bearing

Signs of Wear or Damage in Linear Bearings and Maintenance

Identifying signs of wear or damage in linear bearings is essential for maintaining their performance and preventing costly failures. Here are common signs of wear and damage and how to address them:

  • 1. Increased Friction:

If you notice increased resistance during linear motion, it could indicate that the bearing components are wearing out. This can lead to reduced efficiency and accuracy.

  • Solution: Regular Lubrication:

Ensure proper lubrication of the bearings to minimize friction and prevent premature wear. Follow manufacturer recommendations for lubrication intervals and types.

  • 2. Uneven Movement:

If the linear motion becomes uneven, jerky, or experiences sudden stops, it may be due to damaged bearing components.

  • Solution: Inspection and Replacement:

Inspect the bearings and associated components for any signs of damage, such as dents or cracks. Replace any damaged parts to restore smooth motion.

  • 3. Abnormal Noise:

Unusual noises during linear motion, such as grinding or clicking sounds, can indicate friction and wear within the bearings.

  • Solution: Lubrication and Inspection:

Lubricate the bearings as recommended and inspect for any foreign particles or debris that might be causing the noise. Clean and replace components if necessary.

  • 4. Increased Play or Clearance:

If there is noticeable play or excessive clearance in the linear system, it can affect precision and lead to inaccuracies.

  • Solution: Adjustment or Replacement:

Check for loose bolts, misalignment, or worn components causing the play. Make necessary adjustments or replace worn parts to restore proper fit and function.

  • 5. Reduced Performance:

If your linear system is no longer achieving the desired accuracy or performance, it could be due to worn bearings.

  • Solution: Maintenance and Replacement:

Regularly perform maintenance tasks, such as cleaning, lubrication, and inspection. If performance does not improve, consider replacing the bearings with new ones.

  • 6. Visible Damage:

Any visible signs of physical damage, such as deformation, corrosion, or cracks, require immediate attention.

  • Solution: Replacement:

If the damage is severe, replace the damaged bearings promptly to avoid further issues.

Regular maintenance practices, including proper lubrication, cleaning, and inspection, are crucial for preventing wear and damage in linear bearings. Addressing any signs of wear early can extend the lifespan of the bearings and ensure consistent performance in various applications.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Factors to Consider When Selecting a Linear Bearing

Choosing the right linear bearing for a specific application involves considering several critical factors to ensure optimal performance and longevity:

  • Load Requirements:

Determine the magnitude and direction of the loads the linear bearing will experience. Consider both static and dynamic loads to select a bearing with an appropriate load capacity.

  • Precision and Accuracy:

For applications requiring precise positioning, choose linear bearings with high precision and low backlash. Factors like repeatability and positional accuracy are crucial.

  • Speed and Acceleration:

Consider the speed and acceleration at which the linear bearing will operate. Higher speeds may require bearings with lower friction and better heat dissipation.

  • Environmental Conditions:

Assess the environmental factors such as temperature, humidity, and exposure to contaminants. Choose linear bearings with suitable materials and seals to withstand the conditions.

  • Space Constraints:

Take into account the available space for mounting the linear bearing. Some applications may have limited space, necessitating compact and lightweight bearing options.

  • Maintenance Requirements:

Consider the maintenance needs of the bearing. Bearings with self-lubricating properties or easy access for lubrication can reduce maintenance frequency.

  • Mounting and Configuration:

Choose a linear bearing that can be easily mounted and integrated into your system’s design. Consider factors like mounting orientation and available mounting surfaces.

  • Life Expectancy:

Estimate the expected lifespan of the linear bearing based on the application’s requirements. Select a bearing with a suitable design life to prevent premature failures.

  • Cost and Budget:

Balance the desired performance with the available budget. Opt for linear bearings that provide the necessary features without exceeding cost limitations.

  • Accessories and Add-ons:

Consider any additional accessories or add-ons, such as seals, lubrication systems, or end caps, that can enhance the bearing’s performance and protection.

  • Manufacturer and Supplier:

Choose reputable manufacturers and suppliers that offer reliable products and good customer support. Quality assurance and technical assistance are essential.

Overall, a comprehensive assessment of these factors will help you select the most suitable linear bearing for your specific application, ensuring optimal performance, longevity, and cost-effectiveness.

China Good quality Precision Instrument Cylindrical Roller Bearing CNC Machining Stainless Steel Linear Bearing Wheel Hub Bearing   connecting rod bearingChina Good quality Precision Instrument Cylindrical Roller Bearing CNC Machining Stainless Steel Linear Bearing Wheel Hub Bearing   connecting rod bearing
editor by CX 2024-04-04