China wholesaler Ultra-High Efficiency Linear Motion Bearings Lm6uu Lm8uu Lm10uu Lm Series Bearings Motorcycle Accessories Bearings Linear Bearings Linear Plain Bearing bearing driver

Product Description

Linear bearing is a linear motion system used for linear stroke and cylindrical shaft.
Because the bearing ball and the bearing jacket are point contact, the steel ball rolls with small friction resistance, so the linear bearing has small friction and relatively stable characteristics, does not change with the bearing speed, and can obtain a stable linear movement with high sensitivity and high precision.

Product Name Linear bearing
Brand Name  KSA
Material Gcr15
Precision Grade P0,P6,P5
Certification ISO 9001
Packeage Box /Carton/Wooden Box/Plastic Tube or Per buyers requirement
MOQ Depending On Moedl
Serice OEM
Sample Available
Payment TT or L/C or Western Union
Port HangZhou ZheJiang HangZhou

Product Description

Company Profile

                   ZheJiang Kangshi Precision Bearing Manufacturing Co., Ltd., located in Yandian Town Industrial Park, HangZhou City, ZheJiang Province, mainly produces zero deep groove ball bearings, 2 types of cylindrical roller bearings, 3 types of aligning roller bearings, 6 types of angular contact ball bearings, 7 types of tapered roller bearings, 8 types of thrust ball bearings, thrust bearings, 9 types of thrust aligning roller bearings, outer spherical bearings, auto parts, Motorcycle parts and other rolling bearings. Our factory has strong professional technology, good production equipment and perfect testing means, can fully meet the various types, specifications, high precision and special use requirements of bearing products customized processing, the production process of the product according to the strict national standards of enterprise internal control standards for the implementation of full inspection and multi-project comprehensive inspection of factory products, Can ensure the quality of each set of factory bearing products to meet national standards. Kangshi bearing has always implemented national standards, market prices, and implemented the “three guarantees” principle for customers: To ensure high-quality quality, preferential prices, superior after-sales service! Welcome customers at home and abroad to consult and negotiate business, the company will continue to win the trust of more customers with good product quality and reputation.

Our certificate

Scope of application

Used in electronic equipment, printing machinery, tobacco machinery, medical machinery, textile machinery, food processing machinery, packaging machinery, robots, power tools, CNC machine tools, automobiles and digital three-dimensional coordinate measuring equipment and other precision equipment or special machinery industry.

                 durable                                Heat treatment technology                         Keep clean

With high-end technology manufacturing,         After advanced quenching heat treatment,          Even tiny dust that is invisible to the 
each product has high hardness and high        the bearing has enough hardness to ensure        naked eye can have adverse effects, 
quality of its own performance                           the load carrying capacity                                      so  keep your  surroundings clean
 

FAQ

Q: What is the MOQ?
A: It depends on the bearing type. You can send inquiry or send e-mail for more information.
Q: How about the package?
A: Industrial packing in general condition (Plastic drums/boxes/industrial packaging + cartons + pallets). Accept design package when OEM.
Q: How long is the delivery time?
A: It will take about 10 to 40 days, depends on the model and quantity.
Q:What are the advantages of your company’s services compared to other companies?
A: Factory direct supply, price advantage, 24 hours online timely reply, Provide customers with customs clearance 
and quality of various documents, 100% after-sales service
Q:OEM POLICY
A:We can printing your brand (logo,artwork)on the bearings or laser engraving your brand on the bearings.
    We can custom your packaging according to your design All copyright own by clients and we  promised  don’t 
    disclose any info.
Q:How to contact us quickly?
A:Please send us an inquiry or message and leave your other contact information, such as phone number,
     account or account, we will contact you as soon as possible and provide the detailed information
    you need.

             Please feel free to contact us, if you have any other question

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Low Temperature, Corrosion Resistant, High Temperature, High Speed
Function: Super
Flange Shape: Oval
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Contribution of Linear Bearings to CNC Machining Efficiency and Accuracy

Linear bearings play a crucial role in enhancing the efficiency and accuracy of Computer Numerical Control (CNC) machining processes. Here’s how they contribute:

  • 1. Enhanced Precision:

Linear bearings provide smooth and precise linear motion along machine axes. This precision is essential for achieving tight tolerances and accurate dimensions in machined parts.

  • 2. Reduced Friction and Wear:

Low friction in linear bearings minimizes energy loss and heat generation during movement. This reduces wear on the components and extends the lifespan of the machine, resulting in consistent performance over time.

  • 3. Smooth Motion Control:

Linear bearings enable controlled and predictable motion, allowing CNC machines to execute complex tool paths with smooth transitions. This is crucial for producing intricate shapes and achieving high-quality surface finishes.

  • 4. Minimized Vibration and Noise:

The smooth operation of linear bearings reduces vibration and noise levels during machining. This is especially important for maintaining a stable machining environment and producing parts with minimal surface imperfections.

  • 5. Rapid Traverse Speeds:

Linear bearings facilitate rapid movements of machine components between machining operations. This increases the efficiency of the machining process, reducing cycle times and increasing overall productivity.

  • 6. High Acceleration and Deceleration:

Linear bearings allow CNC machines to accelerate and decelerate rapidly without sacrificing precision. This capability is advantageous for optimizing machining time while maintaining accuracy.

  • 7. Improved Repeatability:

Linear bearings ensure consistent and repeatable motion, resulting in parts that match design specifications precisely across multiple production runs.

  • 8. Flexibility in Design:

Linear bearings enable the design of compact and space-efficient CNC machines. Their small footprint allows for more efficient use of manufacturing floor space.

In summary, linear bearings significantly enhance CNC machining by providing accurate, smooth, and controlled motion. This translates into higher precision, reduced wear, improved surface finishes, and increased productivity. Whether it’s milling, turning, or other CNC processes, linear bearings are essential for achieving the level of accuracy and efficiency demanded by modern manufacturing.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China wholesaler Ultra-High Efficiency Linear Motion Bearings Lm6uu Lm8uu Lm10uu Lm Series Bearings Motorcycle Accessories Bearings Linear Bearings Linear Plain Bearing   bearing driverChina wholesaler Ultra-High Efficiency Linear Motion Bearings Lm6uu Lm8uu Lm10uu Lm Series Bearings Motorcycle Accessories Bearings Linear Bearings Linear Plain Bearing   bearing driver
editor by CX 2024-02-24

China Professional Linear Motion Ball Bearings with Flange Mounted Lmf Type bearing and race

Product Description

The Linear Bearings supplied by CZPT are made of bearing steel, precision ground, chromoly coated, and heat treatment. They apply to auto-equipments, printing, packing, mine, metallurgy, food, electrically, operating processing, light industry, and other machinery of manufacturing industries. 
 

Straight Type LM… LM6-UU ~ LM150-UU
LM6UU-AJ ~ LM150UU-AJ
LM12UU-OP ~ LM150UU-OP
LM5-LUU ~ LM60-LUU
LMA… LM6A ~ LM120A
LM12A-AJ ~ LM120A-AJ
LM12A-OP ~ LM120A-OP
LME… LME5-UU ~LME80-UU
 LME5UU-AJ ~LME80UU-AJ
LME12UU-OP ~LME80UU-OP
LME8-LUU ~ LME60-LUU
LMB… LMB3-UU ~ LMB64-UU
LMB8UUAJ ~ LMB64UU-AJ
LMB8UU-OP ~ LMB64UU-OP
Flanged Type LMF… LMF6-UU ~ LMF100-UU
LMK… LMK6-UU ~ LMK100-UU
LMH… LMH6-UU ~ LMH30-UU
LMEF… LMEF8-UU ~ LMEF60-UU
LMEK… LMEK8-UU ~ LMEK60-UU
LMF…L LMF6-LUU ~ LMF60-LUU
LMK…L LMK6-LUU ~ LMK60-LUU
LMH…L LMH6-LUU ~ LMH30-LUU
LMEF…L LMEF8-LUU ~ LMEF60-LUU
LMEK…L LMEK8-LUU ~ LMEK60-LUU
ST… ST8-UU ~ ST100-UU
Pressed Outer Race KH… KH0824 ~ KH5070
Slide Units SME… SME10-OP ~ SME50-OP
SME16-LOP ~ SME50-LOP
SMA… SMA8-UU ~ SMA60-UU
SMA8-GUU ~ SMA60-GUU
TBR… TBR16-UU ~ TBR30-UU
TBR16-LUU ~ TBR30-LUU
SCJ… SCJ10-UU ~ SCJ50-UU
Linear Bearing Seat SH…A SH8A ~ SH60A
SHF… SHF10 ~ SHF60

Q1: Can I get a free sample?
A1: We provide samples free in freight collected. For special samples requirement, please contact us for more details. 
Q2: How could I pay?
A2: We prefer T/T or L/C at sight. If you prefer other payment terms, please contact us freely.
Q3: What is your brand and packing way? Can you produce my brand and packing?
A3: Our brand is SGC and our own packing materials. We can make your brand. For more details, please contact us.
Q4: What is the delivery lead time?
A4: It depends on the order quantities. The mass production lead time is about 45-60 days after receipt of the deposit. 
Q5: Are you manufacturer or  trading company?
A5: We are manufacturer and exporter. We provide all kinds of OEM services for clients around the world.
Q6: Where is your main market?
A6: We export to the North America, Mexico, Australia, South-east Asia, Europe, U.A.E., Turkey, and other countries.

Our Services
1. Professional QC and QA team to make sure all products qualified before shipping.
2. Competitive price.
3 .Standard package to ensure the safe transportation.
4. Professional service.

Why choose us?
1. Production
    Qualified production, competitive price, professional service. 
2. Quality
    All products are inspected 100% before shipment by relative testing equipments.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Function: Ordinary
Flange Shape: Circular
Shape: Flange
Series: Lmf
Material: Bearing Steel
Type: Lengthen
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Linear Slides

Linear bearings play a crucial role in ensuring the smooth movement of industrial conveyors and linear slides by providing low-friction support and guiding mechanisms. Here’s how linear bearings contribute to their operation:

  • Smooth Motion: Linear bearings offer precise and smooth linear motion to conveyors and linear slides, allowing materials or objects to move seamlessly along a defined path.
  • Low Friction: The design of linear bearings minimizes friction between the moving parts, reducing energy consumption and wear. This is particularly important for conveyors and slides that require frequent and continuous movement.
  • Guidance: Linear bearings guide the movement of the conveyor belts or linear slides, ensuring that they stay on track and follow the desired path without deviation.
  • Load Support: Linear bearings provide support for both radial and axial loads, allowing conveyors to carry heavy loads and linear slides to accommodate objects or components without sacrificing smoothness.
  • Precision: Linear bearings offer high precision and accuracy, which is essential for applications where precise positioning is required, such as in automated manufacturing processes.
  • Reduced Noise and Vibration: Linear bearings contribute to quieter operation by reducing noise and absorbing vibrations generated during movement. This is beneficial in environments where noise reduction is important.
  • Longevity: By minimizing friction and wear, linear bearings enhance the longevity of conveyors and linear slides, reducing the need for frequent maintenance and replacement.

In industrial settings, linear bearings ensure that conveyors efficiently transport materials, products, or components, while linear slides provide controlled and accurate movement for various applications. Whether in manufacturing, logistics, or automation, the use of linear bearings results in enhanced efficiency, reduced downtime, and improved overall performance.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China Professional Linear Motion Ball Bearings with Flange Mounted Lmf Type   bearing and raceChina Professional Linear Motion Ball Bearings with Flange Mounted Lmf Type   bearing and race
editor by CX 2024-02-24

China Hot selling CZPT CZPT CZPT CZPT CZPT CZPT Motorcycle Bearing Wheel Bearing Auto Bearing Linear Angular Contact Ball Bearing wholesaler

Product Description

COMPANY INTRODUCTION
Haisai bearing is a regular model industrial manufacturing enterprise integrating bearing product research and development, design, manufacturing, import and export trade. The company was founded in 1998, covers an area of more than 90,000 square meters, plant area of more than 20,000 square meters, more than 200 employees, more than 20 technical engineers, has passed the international/SO9001:2008,1SO/TS16949:2009 and other quality management system certification. In addition, we have 2 factories (located in ZheJiang and HangZhou respectively) and a trading company. We have completed the high-speed forging of bearing steel dock, automatic high-precision grinding, cryoquenching, unitized automatic constant temperature grinding, intelligent assembly and so on, complete profession production. The product size from 30mm-750mm covers single and double row tapered roller bearing, British garden taper roller bearing, deep groove ball bearing, stainless steel shaft reducer special bearings, agricultural equipment bearings, a total of more than 2500 specifications of products.
We have a professional team of excellent quality, the technical center is equipped with all kinds of testing machines, high-precision testing instruments,material analysis instruments and more than 60 sets, for users to design develop, trial-produce all kinds of special purpose bearings, and do our best to provide high-end customers around the world with the best solutions and good after-sales service!
We has many years of experience in the industrial field of bearing supporting and industrial service, the products are exported to the United States, Germany, Italy, France, the Czech Republic, Russia and other European and American countries and supporting enterprises. We both at home and abroad enjoy a good business reputation!
We promise to be responsible for every set of bearings and industrial products sold! Make every customer satisfied, is our constant pursuit!  
 
PRODUCT DESCRIPTION
Tapered roller bearings are separable bearings. Both the inner and outer rings of the bearing have tapered raceways. This type
of bearing is divided into single row, double row and 4 row tapered roller bearings according to the number of rows installed.
Tapered roller bearings are mainly subjected to combined radial and axial loads based on the radial direction. Tapered roller
bearings are widely used in industries such as automobiles, rolling mills, mining, metallurgy, and plastic machinery.Tapered roller
bearings are separable bearings. Both the inner and outer rings of the bearing have tapered raceways. This type of bearing is divided
into single row, double row and 4 row tapered roller bearings according to the number of rows installed.Tapered roller bearings are
widely used in industries such as automobiles, rolling mills, mining, metallurgy, and plastic machinery.
 

 

A wide range of applications:

• agriculture and forestry equipment
• automotive and industrial gearboxes
• automotive and truck electric components, such as alternators
• electric motors
• fluid machinery
• material handling
• power tools and household appliances
• textile machinery
• two Wheeler.

 

Our Bearing Advantage:

1.Free Sample bearing

2.ISO Standard

3.Bearing Small order accepted

4.In Stock bearing

5.OEM bearing service

6.Professional:30 years manufacture bearing

7.TT Payment or Western Union or Trade Assurance Order
 

Product Name Tapered Roller Bearing
Inner Size 90mm
Outer Size 160mm
Width 40mm
Weight 3.44kg

FAQ
Q:What’s your after-sales service and warranty?
A: We promise to bear the following responsibilities when defective products were found:
1. Replacements would be sent with goods of your next order;
2. Refund for defective products if customers require.

Q:Do you accept ODM&OEM orders?
A: Yes, we provide ODM&OEM services to worldwide customers, we also customize OEM box and packing as your requirements.

Q:What’s the MOQ?
A: MOQ is 10pcs for standardized products; for customized products, MOQ should be negotiated in advance. There is no MOQ for sample orders.

Q:How long is the lead time?
A: The lead time for sample orders is 3-5 days, for bulk orders is 5-15 days.

Q:Do you offer free samples? 
A: Yes we offer free samples to distributors and wholesalers, however customers should bear freight. We DO NOT offer free samples to end users. 

Q:How to place order?
A: 1. Email us the model, brand and quantity,shipping way of bearings and we will quote our best price for you; 
2. Proforma Invoice made and sent to you as the price agreed by both parts; 
3. Deposit Payment after confirming the PI and we arrange production; 
4. Balance paid before shipment or after copy of Bill of Loading. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Double
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 2.2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Contribution of Linear Bearings to CNC Machining Efficiency and Accuracy

Linear bearings play a crucial role in enhancing the efficiency and accuracy of Computer Numerical Control (CNC) machining processes. Here’s how they contribute:

  • 1. Enhanced Precision:

Linear bearings provide smooth and precise linear motion along machine axes. This precision is essential for achieving tight tolerances and accurate dimensions in machined parts.

  • 2. Reduced Friction and Wear:

Low friction in linear bearings minimizes energy loss and heat generation during movement. This reduces wear on the components and extends the lifespan of the machine, resulting in consistent performance over time.

  • 3. Smooth Motion Control:

Linear bearings enable controlled and predictable motion, allowing CNC machines to execute complex tool paths with smooth transitions. This is crucial for producing intricate shapes and achieving high-quality surface finishes.

  • 4. Minimized Vibration and Noise:

The smooth operation of linear bearings reduces vibration and noise levels during machining. This is especially important for maintaining a stable machining environment and producing parts with minimal surface imperfections.

  • 5. Rapid Traverse Speeds:

Linear bearings facilitate rapid movements of machine components between machining operations. This increases the efficiency of the machining process, reducing cycle times and increasing overall productivity.

  • 6. High Acceleration and Deceleration:

Linear bearings allow CNC machines to accelerate and decelerate rapidly without sacrificing precision. This capability is advantageous for optimizing machining time while maintaining accuracy.

  • 7. Improved Repeatability:

Linear bearings ensure consistent and repeatable motion, resulting in parts that match design specifications precisely across multiple production runs.

  • 8. Flexibility in Design:

Linear bearings enable the design of compact and space-efficient CNC machines. Their small footprint allows for more efficient use of manufacturing floor space.

In summary, linear bearings significantly enhance CNC machining by providing accurate, smooth, and controlled motion. This translates into higher precision, reduced wear, improved surface finishes, and increased productivity. Whether it’s milling, turning, or other CNC processes, linear bearings are essential for achieving the level of accuracy and efficiency demanded by modern manufacturing.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China Hot selling CZPT CZPT CZPT CZPT CZPT CZPT Motorcycle Bearing Wheel Bearing Auto Bearing Linear Angular Contact Ball Bearing   wholesalerChina Hot selling CZPT CZPT CZPT CZPT CZPT CZPT Motorcycle Bearing Wheel Bearing Auto Bearing Linear Angular Contact Ball Bearing   wholesaler
editor by CX 2024-02-23

China Good quality Linear Motion Guide CZPT Rg15 Rgr15 Linear Block Bearing Rgh15ca Rgh15 Rgh15ha with Great quality

Product Description

 Basic Info:
 

Model No.  HIWIN Linear Xihu (West Lake) Dis.   Type RG,RGH,RGW,RGH-H
MOQ 1Pcs Delivery Door to Door Available
Stocks store Precision C,H;P;SP;UP
Trademark HIWIN Origin ZheJiang China
HS Code 8483300090 Production Capacity 100000Pcs/Month

 

Detailed Photos

Product Parameters

 

Other Products

Warehouse and produce

Certifications

Packaging & Shipping

 

Exhibition

 

FAQ:

Q1: What’s the standard length of your aluminium profiles be shipping?

A: The standard length of aluminium profiles is 6meter, we can cut to specific length as you need.

 

Q2: What’s your MOQ?
A: We can accept trial orders for prototype, there are plenty of stocks in factory, and can be shipped very fast.

 

Q3: What’s the thickness for anodizing? Can you do 15um?
A: Our normal thickness is about 10-12 um. Yes, we can do 15um and above.

Q4: What color you can do for powder coating? The thickness for powder coat?
A: We can do any color for powder coat as long as you can provide the color sample. Our normally powder coating thickness is 60-80um.

 

Q5: What’s the lead time for small order and mass production?

A: 1~3 working days for small order, and 3~15 working days for mass production of material.

Q6: What certification do you have? What’s your standard?
A: We have ISO certification. Our standard is DIN, AAMA, AS/NZS, China GB.

 

Q7: What’s the packing way?
A: Commonly we use plastic film and kraft paper, also we can make as per customers’ requirements

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane
Material: Bearing Steel
Structure: Tyre Crane
Installation: All-Terrain Crane
Driven Type: AC
Carrying Capacity: Weight Level
Samples:
US$ 12.35/Piece
1 Piece(Min.Order)

|
Request Sample

linear bearing

Contribution of Linear Bearings to CNC Machining Efficiency and Accuracy

Linear bearings play a crucial role in enhancing the efficiency and accuracy of Computer Numerical Control (CNC) machining processes. Here’s how they contribute:

  • 1. Enhanced Precision:

Linear bearings provide smooth and precise linear motion along machine axes. This precision is essential for achieving tight tolerances and accurate dimensions in machined parts.

  • 2. Reduced Friction and Wear:

Low friction in linear bearings minimizes energy loss and heat generation during movement. This reduces wear on the components and extends the lifespan of the machine, resulting in consistent performance over time.

  • 3. Smooth Motion Control:

Linear bearings enable controlled and predictable motion, allowing CNC machines to execute complex tool paths with smooth transitions. This is crucial for producing intricate shapes and achieving high-quality surface finishes.

  • 4. Minimized Vibration and Noise:

The smooth operation of linear bearings reduces vibration and noise levels during machining. This is especially important for maintaining a stable machining environment and producing parts with minimal surface imperfections.

  • 5. Rapid Traverse Speeds:

Linear bearings facilitate rapid movements of machine components between machining operations. This increases the efficiency of the machining process, reducing cycle times and increasing overall productivity.

  • 6. High Acceleration and Deceleration:

Linear bearings allow CNC machines to accelerate and decelerate rapidly without sacrificing precision. This capability is advantageous for optimizing machining time while maintaining accuracy.

  • 7. Improved Repeatability:

Linear bearings ensure consistent and repeatable motion, resulting in parts that match design specifications precisely across multiple production runs.

  • 8. Flexibility in Design:

Linear bearings enable the design of compact and space-efficient CNC machines. Their small footprint allows for more efficient use of manufacturing floor space.

In summary, linear bearings significantly enhance CNC machining by providing accurate, smooth, and controlled motion. This translates into higher precision, reduced wear, improved surface finishes, and increased productivity. Whether it’s milling, turning, or other CNC processes, linear bearings are essential for achieving the level of accuracy and efficiency demanded by modern manufacturing.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Linear Slides

Linear bearings play a crucial role in ensuring the smooth movement of industrial conveyors and linear slides by providing low-friction support and guiding mechanisms. Here’s how linear bearings contribute to their operation:

  • Smooth Motion: Linear bearings offer precise and smooth linear motion to conveyors and linear slides, allowing materials or objects to move seamlessly along a defined path.
  • Low Friction: The design of linear bearings minimizes friction between the moving parts, reducing energy consumption and wear. This is particularly important for conveyors and slides that require frequent and continuous movement.
  • Guidance: Linear bearings guide the movement of the conveyor belts or linear slides, ensuring that they stay on track and follow the desired path without deviation.
  • Load Support: Linear bearings provide support for both radial and axial loads, allowing conveyors to carry heavy loads and linear slides to accommodate objects or components without sacrificing smoothness.
  • Precision: Linear bearings offer high precision and accuracy, which is essential for applications where precise positioning is required, such as in automated manufacturing processes.
  • Reduced Noise and Vibration: Linear bearings contribute to quieter operation by reducing noise and absorbing vibrations generated during movement. This is beneficial in environments where noise reduction is important.
  • Longevity: By minimizing friction and wear, linear bearings enhance the longevity of conveyors and linear slides, reducing the need for frequent maintenance and replacement.

In industrial settings, linear bearings ensure that conveyors efficiently transport materials, products, or components, while linear slides provide controlled and accurate movement for various applications. Whether in manufacturing, logistics, or automation, the use of linear bearings results in enhanced efficiency, reduced downtime, and improved overall performance.

linear bearing

Factors to Consider When Selecting a Linear Bearing

Choosing the right linear bearing for a specific application involves considering several critical factors to ensure optimal performance and longevity:

  • Load Requirements:

Determine the magnitude and direction of the loads the linear bearing will experience. Consider both static and dynamic loads to select a bearing with an appropriate load capacity.

  • Precision and Accuracy:

For applications requiring precise positioning, choose linear bearings with high precision and low backlash. Factors like repeatability and positional accuracy are crucial.

  • Speed and Acceleration:

Consider the speed and acceleration at which the linear bearing will operate. Higher speeds may require bearings with lower friction and better heat dissipation.

  • Environmental Conditions:

Assess the environmental factors such as temperature, humidity, and exposure to contaminants. Choose linear bearings with suitable materials and seals to withstand the conditions.

  • Space Constraints:

Take into account the available space for mounting the linear bearing. Some applications may have limited space, necessitating compact and lightweight bearing options.

  • Maintenance Requirements:

Consider the maintenance needs of the bearing. Bearings with self-lubricating properties or easy access for lubrication can reduce maintenance frequency.

  • Mounting and Configuration:

Choose a linear bearing that can be easily mounted and integrated into your system’s design. Consider factors like mounting orientation and available mounting surfaces.

  • Life Expectancy:

Estimate the expected lifespan of the linear bearing based on the application’s requirements. Select a bearing with a suitable design life to prevent premature failures.

  • Cost and Budget:

Balance the desired performance with the available budget. Opt for linear bearings that provide the necessary features without exceeding cost limitations.

  • Accessories and Add-ons:

Consider any additional accessories or add-ons, such as seals, lubrication systems, or end caps, that can enhance the bearing’s performance and protection.

  • Manufacturer and Supplier:

Choose reputable manufacturers and suppliers that offer reliable products and good customer support. Quality assurance and technical assistance are essential.

Overall, a comprehensive assessment of these factors will help you select the most suitable linear bearing for your specific application, ensuring optimal performance, longevity, and cost-effectiveness.

China Good quality Linear Motion Guide CZPT Rg15 Rgr15 Linear Block Bearing Rgh15ca Rgh15 Rgh15ha   with Great qualityChina Good quality Linear Motion Guide CZPT Rg15 Rgr15 Linear Block Bearing Rgh15ca Rgh15 Rgh15ha   with Great quality
editor by CX 2024-02-23

China Professional DAC34640037/DAC38740040-RZ/Z (ABS)/DAC40750039-2RZ/wheel Hub/linear guide/steel ball/Diesel generator sets/auto/gear/Engine/motorcycle/tractor/1688 bearing bearing air

Product Description

Product Parameters

Granville remains committed to providing reliable products in the bearing industry while retaining its position in innovation and quality. GIL’s portfolio not only helps reduce maintenance costs and breakdowns but also reinforces customer confidence. Find a full range of the product from Granville Automotive Aftermarket division, get in touch.

Bearing No. dxDxBxC (mm) Interchangeable Bearing No. dxDxBxC (mm) Interchangeable
DAC25525716 25 52 20.6 20.6 617546A DAC38740450 38 74.04 50 50 559912
DAC25520037 25 52 37 37 445539A DAC39680037 39 68 37 37 311315DB
DAC27600050 27 60 50 50 513071 DAC39680637 39 68.06 37 37 311315BD
DAC3050571 30 50 20 20 DE0678CS12 DAC39720037 39 72 37 37 311396
DAC30540571 30 54 24 24 DE0681CS16 DAC39720637 39 72.06 37 37 542186CA
DAC3 0571 030/25 30 55 30 25 ATV-BB-2 DAC40720037 40 72 37 37 311443B
DAC30600337 30 60.03 37 37 633313C DAC4072571 40 72.07 37 37 51004
DAC30640042 30 64 42 42   DAC40740036/34 40 74 36 34 DAC4074BW
DAC34620037 34 62 37 37 3 0571 4B DAC40740540 40 74.05 40 40 DE08A27
DAC34640037 34 64 37 37 3 0571 6 DAC4571037 40 75 37 37 633966E
DAC34660037 34 66 37 37 636114A DAC4571033/28 40 76 33 28 474743
DAC35640037 35 64 37 37 510014 DAC4571441/38 40 76.04 41 38 DE571
DAC35650035 35 65 35 35 443952EA DAC408000302 40 80 30.2 30.2 440320H
DAC35660032 35 66 32 32 445980BA DAC40800036/34 40 80 36 34 513036
DAC35660033 35 66 33 33 633676 DAC40820040 40 82 40 40  
DAC35660037 35 66 37 37 311309 DAC40840338 40 84.571 38 38 IR-8638
DAC35680037 35 68 37 37 633295 DAC42750037 42 75 37 37 633457
DAC35685713/30 35 68.02 33 30 DAC3568W-6 DAC4275571 42 75.07 37 37 633791
DAC3572571 35 72 28 28 441832AB DAC42760038/35 42 76 38 35 IR-8650
DAC35720034 35 72 34 34 B36 DAC42760039 42 76 39 39 513058
DAC35725713/31 35 72.02 33 31   DAC42760040/37 42 76 40 37 909042
DAC3572571 35 72.04 33 33 633669 DAC42800036/34 42 80 36 34 MV4280
DAC3572571 35 72.04 34 34   DAC42800045 42 80 45 45 DAC428045BW
DAC3672571 36 72.05 34 34 B32 DAC42820036 42 82 36 36 446047
DAC3676571/27 36 76 29 27 DE 0571 DAC42820037 42 82 37 37 311413A
DAC37720037 37 72 37 37 633541B DAC42840036 42 84 36 36 444090
DAC3772571 37 72.04 37 37 633571 DAC42840039 42 84 39 39 440090
DAC37740045 37 74 45 45 35716AC DAC42845716 42 84.02 36 36 444090AB
DAC3872571/33 37.99 72.04 36 33 51007 DAC45800045 45 80 45 45 564725AB
DAC38745716/33 37.99 74.02 36 33 DAC3874W DAC45845719 45 84.02 39 39 513130
DAC38700038 38 70 38 38 510012 DAC45850041 45 85 41 41 580191
DAC38720440 38 72.04 40 40 DE571 DAC49880046 49 88 46 46  
DAC38740036/33 38 74 36 33 514002 DAC50900034 50 90 34 34 633007C

 

Automotive Bearing
Magnetic encoder bearing        
Bearing No. d(MM) D(MM) B(MM) C(MM)
DAC35680037-2RZ (ABS) 35 68 37 37
DAC35720033-RZ/Z (ABS) 35 72 33 33
DAC3772571-2RZ (ABS) 37 72.04 37 37
DAC3774571-2RZ (ABS) 37 74.04 37 37
DAC37720033-2RZ (ABS) 37 72 33 33
DAC38730040-RZ/Z (ABS) 38 73 40 40
DAC38690039/34-2RZ (ABS) 38 69 39 34
DAC38740040-RZ/Z (ABS) 38 74 40 40
DAC387000038-2RZ/Z (ABS) 38 70 38 38
DAC38710039-2RZ/Z (ABS) 38 71 39 39
DAC39720037-2RZ/Z (ABS) 39 72 37 37
DAC39740039-2RZ (ABS) 39 74 39 39
DAC40840639/40-2RZ/Z (ABS) 40 84.06 39 40
DAC4571039-2RZ (ABS) 40 75 39 39
DAC4571037-2RZ (ABS) 40 75 37 37
DAC4084571/40-2RZ(ABS) 40 84.05 39 40
DAC4571038 (ABS) 40 76 38 38
DAC42750037 (ABS) 42 75 37 37
DAC42820036-2RZ (ABS) 42 82 36 36
DAC408457190 (ABS) 40 84.05 39.7 39.7
DAC42770039-2RZ (ABS) 42 77 39 39
DAC42800045-2RZ (ABS) 42 80 45 45
DAC43780044-RZ/Z (ABS) 43 78 44 44
DAC43780040-2RZ(ABS) 43 80 40 40
DAC43790041/38-RZ/Z(ABS) 43 79 41 38
DAC43820047-2RZ/Z(ABS) 43 82 47 47
DAC43800040-2RZ/Z(ABS) 43 80 40 40
DAC44825037-2RZ(ABS) 44 82.5 37 37
DAC45850441-2RZ(ABS) 45 85.04 41 41
DAC45840039-RZ/Z(ABS) 45 84 39 39
DAC45840039-RZ/Z(ABS) 45 84 39 39
DAC45830039-2RZ(ABS) 45 83 39 39
DAC45840042-RZ/Z(ABS) 45 84 42 40
DAC45820042-2RZ/Z(ABS) 45 82 42 42
DAC45860044-2RZ/Z(ABS) 45 86 44 44
DAC45840045-2RZ/Z(ABS) 45 84 45 45
DAC45830044-2RZ(ABS) 45 83 44 44
DAC458860042/40-RZ/Z(ABS) 48 86 42 40
DAC49900045-2RZ/Z(ABS) 49 90 45 45
DAC49880048-2RZ/Z(ABS) 49 88 48 48
DAC51910044-RZ/Z(ABS) 51 91 44 44
DAC51960050-2RZ/Z(ABS) 51 96 50 50
DAC52910040-RZ/Z(ABS) 52 91 40 40
 

01 Roller Bearing

Cylindrical Roller Bearings Spherical Roller Bearings
Taper Roller Bearings Needle Roller Bearings

02 Applications
  

Main Applications
Automobile Others
Front Wheel Machine Tool Spindles
Rear Wheel Construction Machinery
Gearbox Large Agricultural Machinery
Differential Pinion Shaft Railroad Vehicle Gear Reducers
  Mill Spokes And Reducers
***Suitable for Heavy Loads and Shock Loads***

 

Packaging & Shipping

 

Company Profile

About Us
Focus on a variety of industries
Provide maintenance solutions
Optimize customer inventory and reduce cost
 

What We Do
Comprehensive product range:

– Bearings
– Oil seals, Transmission belt
– Chain and Sprocket
– Hub assembly & Wheel bearings
– Coupling, castings
– Linear motion

Our Advantages

1. We have the most advanced bearing process equipment, CNC automatic facilities, and testing instruments.
2. We manufacture ball bearings and mounted bearing units, and also provide a strong full range of products, including electric motors and components One-stop partnerships products from our audited supply chain.
3. All products are manufactured exclusively by companies with ISO 9001:2008 certified Quality Systems which use state-of-the-art machines. The quality path starts from the beginning to deliver and goods’ quality trackable

 

Advantage
Advanced Automatic Lines Comprehensive Range
Premium Quality Sustainability

Our Values
Behavior-based, service-oriented, focused on results and committed to continuous improvement

Factory
To be a leader in providing the best valuable (Reasonable cost, Reliable quality) supply of precision rollers.
Providing this value, will help our customers remain competitive in the global marketplace.

Please see detailed introduction about our manufacturing process and measuring process.

Advantage Manufacturing Processes and Quality Control:
01Heat Treatment
02 Centerless Grinding Machine 11200 (most advanced)
03 Automatic Production Lines for Raceway
04 Automatic Production Lines for Raceway
05 Ultrasonic Cleaning of Rings
06 Automatic Assembly
07 Ultrasonic Cleaning of Bearings
08 Automatic Greasing, Seals Pressing
09Measurement of Bearing Vibration (Acceleration)
10 Measurement of Bearing Vibration (Speed)
11 Laser Marking
12 Automatic Packing

 

Quality Warranty

Granville as a manufacturer of high quality products, guarantees compliance with the highest standards relative to the use of the best steel quality in the production process, the highest standards in the design of contact surfaces, as well as the most efficient packing and lubrication of parts. From material coming, quality control through all processes. Except interal test, goods to third party inspection if required. After the center of inspection and experiment being founded, effective methods of inspecting all kinds of raw materials are mastered and then the reliability of bearings is ensured. One of our main objectives is the continued improvement in the quality of our products and processes, in pursuit of which we obtained ISO certification 9001:2008 and TS16949. 

After Sales Service

  1. Optimize customer inventory and reduce cost
  2. Provide maintenance solutions

FAQ

 

Q1.Can you accept OEM and customization?
A: Yes. We can customize it according to the samples and drawings you provide.

Q2.Do you keep a stock of these things?
A: In stocks

Q3.Can you provide samples free of charge?
A: Yes. We can provide samples free of charge. But the freight is paid by the customer.

Q4.What’s the delivery date?
A:The delivery time of sample orders is 3 working days.The bulk orders are 5-10 working days.

Q5: Why your price is higher than others?
A: Price = quality . We firmly believe that by the quality of the customer is always get more reliable than on price . So we insist on doing high-quality products.

Q6:What kind of transport do you have ?
A: According to the weight,we will choose the most appropriate mode of transport for you. Our freight forwarding is efficient and cheap.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller/ball bearing
The Number of Rows: Double
Material: Bearing Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Sample unit price depends on the specific model
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Challenges and Solutions for Addressing Friction and Wear in Linear Bearings

Friction and wear are common challenges in linear bearings that can impact their performance and lifespan. Here are the challenges and some solutions to address them:

  • 1. Challenge: Friction:

Friction between the bearing components can lead to increased energy consumption, heat generation, and reduced efficiency.

  • Solution: Lubrication:

Proper lubrication is essential to minimize friction. Lubricants reduce the contact between moving parts, allowing smoother motion and reducing wear. Choosing the right lubricant and applying it correctly can significantly mitigate friction-related issues.

  • 2. Challenge: Wear:

Continuous movement can lead to wear on the bearing surfaces, affecting precision and performance over time.

  • Solution: Regular Maintenance:

Implementing a regular maintenance schedule can help monitor wear and replace worn components before they compromise performance. This includes cleaning, re-lubrication, and periodic inspection of the bearing’s condition.

  • 3. Challenge: Contaminants:

Dust, debris, and foreign particles can enter the bearing system, leading to increased friction and accelerated wear.

  • Solution: Sealing and Protection:

Using seals, covers, or protective enclosures can help prevent contaminants from entering the bearing system. These protective measures maintain the integrity of the lubricant and extend the bearing’s lifespan.

  • 4. Challenge: Improper Installation:

If linear bearings are not installed correctly, misalignment and uneven load distribution can contribute to friction and wear.

  • Solution: Precise Installation:

Follow manufacturer guidelines for proper installation, ensuring accurate alignment and even load distribution. This reduces the risk of premature wear and ensures optimal performance.

  • 5. Challenge: Inadequate Lubrication:

If the linear bearings are under-lubricated or over-lubricated, it can lead to increased friction and wear.

  • Solution: Lubrication Management:

Monitor and manage lubrication levels to ensure they are within the recommended range. Regularly assess the lubricant’s condition and replenish as needed to maintain optimal performance.

  • 6. Challenge: High Loads and Speeds:

High loads and speeds can increase friction and wear on linear bearings.

  • Solution: Proper Selection:

Select linear bearings that are designed to handle the specific loads and speeds of the application. This ensures that the bearings can operate effectively under the given conditions.

Addressing friction and wear challenges in linear bearings requires a combination of proper maintenance practices, appropriate lubrication, protective measures, and careful selection of bearings. By implementing these solutions, the performance and longevity of linear bearings can be optimized.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China Professional DAC34640037/DAC38740040-RZ/Z (ABS)/DAC40750039-2RZ/wheel Hub/linear guide/steel ball/Diesel generator sets/auto/gear/Engine/motorcycle/tractor/1688 bearing   bearing airChina Professional DAC34640037/DAC38740040-RZ/Z (ABS)/DAC40750039-2RZ/wheel Hub/linear guide/steel ball/Diesel generator sets/auto/gear/Engine/motorcycle/tractor/1688 bearing   bearing air
editor by CX 2024-02-22

China best Linear Motion Bearing Needle Roller Bearing Bf5032/Lns5032 with Best Sales

Product Description

 

Basic Features of Needle Rollers and Cage Assemblies Bearing
Types K… series
K…D series
K…ZW series
K…ZWD series
KZK… series
KBK… series
Material Bearing Steel(GCr15, 100Cr6)
SPCC St14
Nylon
Bronze
Dimension Metric and Inch
Dimension Range 3mm~150mm(bore diameter)
MOQ 1
Delivery Time 15-45 days
Sea Ports ZheJiang HangZhou HangZhou

Why Choose HECTO?
1. More than 20 years of manufacturing and exporting experiences
2. an IATF16949 company
3. 100% inspecting of products
4. More competitive prices with better quality
5. More than 99% of delivery in time
6. Rapid response of your emails and questions
7. Products can be traced back

 
 
 
 

Needle Roller and Cage Assemblies

Shaft Bearing No. Boundary Dimensions(mm) Basic Load Rating(N) Limiting Speed
Fw Ew Bc Cr Cor Oil(RPM)
3 K3X5X7TN 3 5 7 1540 1290 50000
K3X5X9TN 3 5 9 1710 1480 48000
K3X6X7TN 3 6 7 1430 970 47000
4 K4X7X7TN 4 7 7 2330 1840 43000
K4X7X10TN 4 7 10 2350 1920 39000
5 K5X8X8TN 5 8 8 2300 1880 37000
K5X8X10TN 5 8 10 2800 2450 37000
6 K6X9X8TN 6 9 8 2500 2240 35000
K6X9X10TN 6 9 10 3300 3100 35000
K6X10X13TN 6 10 13 3500 2800 33000
7 K7X10X8TN 7 10 8 2750 2550 32000
K7X10X10TN 7 10 10 3350 3400 32000
8 K8X11X8TN 8 11 8 3000 2900 30000
K8X11X10TN 8 11 10 3830 3950 30000
K8X11X13TN 8 11 13 5000 5700 30000
K8X12X10TN 8 12 10 4900 4600 30000
9 K9X12X10TN 9 12 10 4200 4700 30000
K9X12X13TN 9 12 13 5500 6700 30000
10 K10X13X10TN 10 13 10 4500 5250 27000
K10X13X13TN 10 13 13 6000 7600 27000
K10X13X16TN 10 13 16 6300 7800 27000
K10X14X10TN 10 14 10 7000 7900 27000
K10X14X13TN 10 14 13 8000 9100 26000
K10X16X12TN 10 16 12 7000 9300 27000
12 K12X15X9TN 12 15 9 4120 5210 25000
K12X15X10TN 12 15 10 4320 5730 25000
K12X15X13TN 12 15 13 6000 8100 25000
K12X16X8TN 12 16 8 1200 4700 25000
K12X16X10TN 12 16 10 6000 6900 25000
K12X16X13TN 12 16 13 7900 9200 25000
K12X17X13TN 12 17 13 9300 10000 24000
K12X18X12TN 12 18 12 9800 8000 24000
K12X15X20TN 12 15 20 8200 12000 25000
14 K14X17X10 14 17 10 5100 6800 23000
K14X17X17 14 17 17 9300 14000 23000
K14X18X10 14 18 10 6800 8300 23000
K14X18X13 14 18 13 8100 9800 23000
K14X18X14 14 18 14 9200 12000 23000
K14X18X15 14 18 15 10000 13000 23000
K14X18X17 14 18 17 10500 13900 23000
K14X20X12 14 20 12 9900 10500 22000
15 K15X18X14 15 18 14 7500 11000 23000
K15X18X17 15 18 17 9600 15900 23000
K15X19X10 15 19 10 7200 9000 22000
K15X19X13 15 19 13 8300 9800 22000
K15X19X17 15 19 17 10300 15000 22000
K15X19X24 ZW 15 19 24 12800 25710 22000
K15X22X13 15 22 13 9700 11000 22000
K15X22X12 15 22 12 10000 13000 22000
K15X21X15 15 21 15 13800 16000 22000
K15X21X21 15 21 21 18000 24000 22000
16 K16X20X10 16 20 10 7600 9700 22000
K16X20X13 16 20 13 8700 11300 22000
K16X20X17 16 20 17 11200 16300 22000
K16X21X10 16 21 10 9000 12000 22000
K16X22X12 16 22 12 11000 12000 21000
K16X22X13 16 22 13 12000 13400 21000
K16X22X16 16 22 16 14300 17000 21000
K16X22X20 16 22 20 18000 22300 21000
K16X23X14 16 23 14 19000 21000 19000
K16X24X20 16 24 20 21100 23000 20000
17 K17X21X10 17 21 10 7900 15710 21000
K17X21X13 17 21 13 10000 14100 21000
K17X21X17 17 21 17 12000 17400 21000
K17X23X14 17 23 14 11000 15000 21000
18 K18X22X10 18 22 10 8200 9900 20000
K18X22X13 18 22 13 9000 12100 20000
K18X22X17 18 22 17 11900 17600 20000
K18X24X12 18 24 12 11200 12900 20000
K18X24X13 18 24 13 12900 14900 20000
K18X24X13.5 18 24 13.5 12900 14900 20000
K18X24X20 18 24 20 20000 26500 20000
K18X25X14 18 25 14 16500 18800 20000
K18X25X22 18 25 22 22900 28400 20000
K18X26X14 18 26 14 18000 20000 18000
K18X28X16 18 28 16 19000 18400 19000
19 K19X23X13 19 23 13 9300 13000 20000
K19X23X17 19 23 17 12000 18600 20000
20 K20X24X10 20 24 10 8700 12100 19000
K20X24X12 20 24 12 9600 13800 19000
K20X24X13 20 24 13 9600 13800 19000
K20X24X17 20 24 17 12400 20000 19000
K20X26X12 20 26 12 13100 15700 19000
K20X26X16 20 26 16 18000 25000 18500
K20X26X17 20 26 17 18700 25500 19000
K20X26X20 20 26 20 20600 28500 19000
K20X28X20 20 28 20 23400 28000 18000
K20X28X25 20 28 25 30000 28500 18000
K20X30X30 20 30 30 35000 41000 18000
21 K21X25X13 21 25 13 9600 14500 19000
K21X25X17 21 25 17 12800 21000 19000
22 K22X26X10 22 26 10 8700 12900 18000
K22X26X13 22 26 13 10000 15400 18000
K22X26X17 22 26 17 13100 22100 18000
K22X27X13 22 27 13 14000 23000 18000
K22X28X17 22 28 17 19000 26500 18000
K22X28X23 22 28 23 20000 27000 19000
K22X29X16 22 29 16 19500 25000 17000
K22X30X15TN 22 30 15 19600 22900 17000
K22X30X20 22 30 20 21000 23500 18900
K22X32X24 22 32 24 33500 39500 16000
23 K23X35X16TN 23 35 16 24000 23400 15000
24 K24X28X10 24 28 10 9400 14300 17000
K24X28X13 24 28 13 10500 17000 17000
K24X28X17 24 28 17 14000 24500 17000
K24X29X13 24 29 13 13100 19100 16000
K24X30X17 24 30 17 19000 27000 16000
K24X30X31 24 30 31 27000 43000 16000
25 K25X29X10 25 29 10 9700 14900 16000
K25X29X13 25 29 13 10800 17900 16000
K25X29X17 25 29 17 14500 25500 16000
K25X30X13 25 30 13 14100 21300 16000
K25X30X20 25 30 20 21100 28000 16000
K25X30X25 25 30 25 21700 40400 15000
K25X30X26 25 30 26 25710 26500 15000
K25X31X17 25 31 17 19000 28000 16000
K25X31X21 25 31 21 24100 37500 16000
K25X32X16 25 32 16 20500 27500 15000
K25X33X20 25 33 20 28000 37500 15000
K25X33X24 25 33 24 33900 46500 15000
K25X34X18 25 34 18 48000 67000 15000
K25X35X30 25 35 30 46500 61500 14000
K25X30X26 ZW 25 30 26 21000 35000 14000
26 K26X30X10 26 30 10 9500 15500 16000
K26X30X13 26 30 13 11100 18700 16000
K26X30X17 26 30 17 14700 27000 16000
K26X31X13 26 31 13 12400 18400 15000
K26X30X22 26 30 22 15200 28000 16000
27 K27X32X17 27 32 27 16000 34000 17000
28 K28X32X16.5 28 32 16.5 15000 32400 14000
K28X32X17 28 32 17 15000 32400 14000
K28X33X13 28 33 13 14800 23600 14000
K28X33X17 28 33 17 19100 33000 14000
K28X33X27 TN 28 33 27 22800 40500 14000
K28X34X17 28 34 17 21300 35000 14000
K28X35X16 28 35 16 21000 29000 14000
K28X35X18 28 35 18 23500 33500 14000
K28X35X20 28 35 20 24000 34000 14000
K28X35X27 28 35 27 34500 54500 14000
K28X36X16 28 36 16 34000 47000 11000
K28X40X18 28 40 18 33000 36500 12000
K28X40X25 28 40 25 45000 54500 12000
30 K30X33X10 30 33 10      
K30X34X13 30 34 13 11800 21200 13000
K30X35X13 30 35 13 15100 25000 13000
K30X35X17 30 35 17 19100 33500 13000
K30X35X26 30 35 26      
K30X35X27 30 35 27 30000 58500 13000
K30X37X16 30 37 16 22500 33000 13000
K30X38X25 30 38 25 16000 390000 13000
K30X39X21 30 39 21      
K30X40X18 30 40 18 31500 39500 12000
K30X40X27 30 40 27      
K30X40X30 30 40 30 48500 68500 13000
K30X35X26 30 35 26 23500 43500 12000
K30X42X44.1 30 42 44.1      
32 K32X37X13 32 37 13 15000 25000 12000
K32X37X17 32 37 17 19400 35000 12000
K32X37X27 32 37 27 29500 59500 12000
K32X37X28 TN 32 37 28 23100 43000 12000
K32X38X16 32 38 16 21000 34000 12000
K32X38X20 32 38 20 26000 44500 12000
K32X38X26 TN 32 38 26 27000 46500 12000
K32X39X16 32 39 16 23500 35000 12000
K32X39X18 32 39 18 26000 40500 12000
K32X40X20 32 40 20 37000 40500 12000
K32X40X36 32 40 36 53500 91500 12000
K32X46X32 32 46 32 65500 82500 11000
K32X40X42 TN 32 40 42 49500 83500 12000
35 K35X40X13 35 40 13 15800 27500 11000
K35X40X17 35 40 17 20300 38000 11000
K35X40X25 35 40 25 29000 59500 11000
K35X40X27 TN 35 40 27 24500 48000 11000
K35X40X27 35 40 27 27800 62100 11000
K35X40X30 35 40 30 25000 49500 11000
K35X42X16 35 42 16 23900 37000 11000
K35X42X18 35 42 18 27000 42500 11000
K35X42X30 35 42 30 38500 67500 11000
K35X43X18 35 43 18 28000 41500 11000
K35X45X20 35 45 20 36500 49500 10000
K35X45X30 35 45 30 52500 78500 10000
K35X45X49 35 45 49 81500 13400 10000
K35X40X30 ZW 35 40 30 31500 65500 11000
K35X42X20 ZW 35 42 20 29500 48500 11000
36 K36X41X30 36 41 30 23000 43000 11000
K36X42X16 36 42 16 24000 42000 11000
37 K37X42X17 37 42 17 21900 42500 10000
K37X42X27 37 42 27 31500 67500 10000
K37X45X26 37 45 26 43500 73500 10000
38 K38X43X17 38 43 17 20000 38000 10000
K38X43X27 38 43 27 31000 67500 10000
K38X46X20 38 46 20 35000 56500 10000
K38X46X32 38 46 32 54500 98500 10000
39 K39X44X24 39 44 24 28000 58500 10000
K39X44X26 ZW 39 44 26 27000 55500 10000
40 K40X44X13 40 44 13 13500 28000 10000
K40X45X13 40 45 13 17100 32000 10000
K40X45X17 40 45 17 20900 41000 10000
K40X45X21 40 45 21 24400 49500 10000
K40X45X27 40 45 27 32500 72500 10000
K40X46X17 40 46 17 24500 44500 9000
K40X47X18 40 47 18 29000 49500 9000
K40X47X20 40 47 20 32000 56500 9000
K40X48X20 40 48 20 35500 58500 9000
K40X45X30 ZW 40 45 30 26000 53500 9000
42 K42X47X13 42 47 13 17300 33000 9000
K42X47X17 42 47 17 21100 42500 9000
K42X47X25 TN 42 47 25 27000 57500 9000
K42X47X27 42 47 27 33000 74500 9000
K42X48X35 42 48 35 35000 76000 9000
K42X50X18 42 50 18 31000 49500 9000
K42X50X20 42 50 20 34500 56500 9000
K42X47X30 ZW 42 47 30 31000 75500 9000
43 K43X48X17 43 48 17 21000 42500 9000
K43X48X27 43 48 27 33000 74500 9000
K43X50X18 43 50 18 30500 53500 8000
45 K45X49X19 45 49 19 17500 40000 8000
K45X50X17 45 50 17 22000 45000 8000
K45X50X27 45 50 27 34000 79500 8000
K45X50X32 TN 45 50 32 38000 90500 8000
K45X52X18 45 52 18 31000 56500 8000
K45X52X21 TN 45 52 21 39500 57500 8000
K45X53X20 45 53 20 38500 66500 8000
K45X53X21 45 53 21 38000 66500 8000
K45X53X22 45 53 22 42000 66500 8000
K45X53X28 45 53 28 51500 97500 8000
K45X59X18 TN 45 59 18 43500 53500 7000
K45X59X32 45 59 32 72500 101500 7000
K45X59X36 45 59 36 75500 108500 7000
K45X51X36 ZW 45 51 36 44500 98500 7000
47 K47X52X17 47 52 17 22800 48500 8000
K47X52X27 47 52 27 34500 82500 8000
K47X53X25 47 53 25 38000 81500 8000
K47X55X28 47 55 28 52500 99500 7500
48 K48X54X19 48 54 19 30000 60500 7500
K48X54X25 48 54 25 31000 91000 7500
50 K50X55X13.5 50 55 13.5 17500 36000 7500
K50X55X17 50 55 17 21400 46500 7500
K50X55X20 50 55 20 26000 59500 7500
K50X55X30 50 55 30 38500 96500 7500
K50X57X18 50 57 18 33000 62500 7000
K50X58X20 50 58 20 35000 61500 7000
K50X58X25 50 58 25 43500 80500 7000
52 K52X57X12 52 57 12 17500 36000 7000
55 K55X60X20 55 60 20 28000 65500 6500
K55X60X27 55 60 27 37500 96500 6500
K55X60X30 55 60 30 40500 10300 6500
K55X61X20 55 61 20 41000 11000 6500
K55X62X18 55 62 18 35000 69500 6500
K55X63X15 55 63 15 245000 40500 6500
K55X63X20 55 63 20 39500 73500 6500
K55X63X25 55 63 25 49500 99500 6500
K55X63X32 55 63 32 61500 129500 6500
K55X60X40ZW 55 60 40 48000 132000 6500
56 K56X61X20 56 61 20 27000 64500 6500
58 K58X63X17 58 63 17 21500 63500 6000
K58X64X19 58 64 19 24500 77500 6000
K58X65X18 58 65 18 34500 69500 6000
K58X65X38ZW 58 65 38 48500 106500 6000
60 K60X65X20 60 65 20 29000 71500 6000
K60X65X30 60 65 30 42000 115500 6000
K60X68X20 60 68 20 43000 84500 5500
K60X68X23 60 68 23 49000 100500 5500
K60X68X25 60 68 25 52500 110500 5500
K60X68X27 60 68 27 59000 120500 6000
K60X75X42 60 75 42 11300 19200 5500
K60X66X33ZW 60 66 33 45500 111500 6000
K60X66X40ZW 60 66 40 57500 150500 5500
K60X68X30ZW 60 68 30 44000 87500 5500
K60X68X34ZW 60 68 34 47500 95500 5500
62 K62X70X40ZW 62 70 40 65500 145500 5500
63 K63X70X21 63 70 21 45000 100500 5500
64 K47X70X16 64 70 16 27500 59500 5500
65 K65X70X20 65 70 20 30000 76500 5500
K65X70X30 65 70 30 43500 93500 5500
K65X73X23 65 73 23 45500 93500 5000
K65X73X30 65 73 30 56500 122500 5000
68 K68X74X20 68 74 20 35000 83500 5000
K68X74X30 68 74 30 46000 117500 5000
K68X74X35 ZW 68 74 35 48000 124500 5000
K68X75X20 68 75 32 53500 127500 4500
70 K70X76X20 70 76 20 35500 85500 4500
K70X76X30 70 76 30 51500 138500 4500
K70X78X25 70 78 25 51500 111500 4500
K70X78X30 70 78 30 59500 134500 4500
K70X80X30 70 80 30 72500 147500 4500
K70X78X46 ZW 70 78 46 77500 18800 4500
72 K72X80X20 80 20 41000 84500 4500  
73 K73X79X20 73 79 20 36500 99500 4500
75 K75X81X20 75 81 20 37000 93500 4500
K75X81X30 75 81 30 51500 142000 4500
K75X83X23 75 83 23 49500 108000 4000
K75X83X30 75 83 30 91500 142000 4000
K75X83X35 ZW 75 83 35 62500 146500 4000
K75X83X40 ZW 75 83 40 72500 176500 4000
80 K80X86X20 80 86 20 38000 97500 4000
K80X86X30 80 86 30 55500 158500 4000
K80X88X30 80 88 30 71500 178500 4000
K80X88X40 ZW 80 88 40 75500 191500 4000
K80X88X46 ZW 80 88 46 87500 23000 4000
85 K85X92X20 85 92 20 44000 15710 3500
90 K90X97X20 90 97 20 44500 112500 3000
K90X98X27 90 98 27 60500 149500 3000
K90X98X30 90 98 30 67500 171500 3000
95 K95X102X20 95 102 20 45500 122500 2900
K95X103X30 ZW 95 103 30 68500 179500 2900
K95X103X40 ZW 95 103 40 82500 227500 2900
100 K100X107X21 100 107 21 47500 126500 2700
K100X108X27 100 108 27 56500 142500 2700
K100X108X30 100 108 30 70500 187500 2700
105 K105X112X21 105 112 21 47000 126500 2500
K105X113X30 105 113 30 71500 196500 2500
110 K110X117X24 110 117 24 55500 157500 2300
K110X118X30 110 118 30 77500 218500 2300
115 K115X123X27 115 123 27 63000 170000 4100
K115X125X35 115 125 35 63000 170000 4100
K115X125X40 115 125 40 65000 175000 4100

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Rows Number: Single
Load Direction: Thrust Bearing
Samples:
US$ 0/Set
1 Set(Min.Order)

|

Order Sample

quality bearing
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Contribution of Linear Bearings to CNC Machining Efficiency and Accuracy

Linear bearings play a crucial role in enhancing the efficiency and accuracy of Computer Numerical Control (CNC) machining processes. Here’s how they contribute:

  • 1. Enhanced Precision:

Linear bearings provide smooth and precise linear motion along machine axes. This precision is essential for achieving tight tolerances and accurate dimensions in machined parts.

  • 2. Reduced Friction and Wear:

Low friction in linear bearings minimizes energy loss and heat generation during movement. This reduces wear on the components and extends the lifespan of the machine, resulting in consistent performance over time.

  • 3. Smooth Motion Control:

Linear bearings enable controlled and predictable motion, allowing CNC machines to execute complex tool paths with smooth transitions. This is crucial for producing intricate shapes and achieving high-quality surface finishes.

  • 4. Minimized Vibration and Noise:

The smooth operation of linear bearings reduces vibration and noise levels during machining. This is especially important for maintaining a stable machining environment and producing parts with minimal surface imperfections.

  • 5. Rapid Traverse Speeds:

Linear bearings facilitate rapid movements of machine components between machining operations. This increases the efficiency of the machining process, reducing cycle times and increasing overall productivity.

  • 6. High Acceleration and Deceleration:

Linear bearings allow CNC machines to accelerate and decelerate rapidly without sacrificing precision. This capability is advantageous for optimizing machining time while maintaining accuracy.

  • 7. Improved Repeatability:

Linear bearings ensure consistent and repeatable motion, resulting in parts that match design specifications precisely across multiple production runs.

  • 8. Flexibility in Design:

Linear bearings enable the design of compact and space-efficient CNC machines. Their small footprint allows for more efficient use of manufacturing floor space.

In summary, linear bearings significantly enhance CNC machining by providing accurate, smooth, and controlled motion. This translates into higher precision, reduced wear, improved surface finishes, and increased productivity. Whether it’s milling, turning, or other CNC processes, linear bearings are essential for achieving the level of accuracy and efficiency demanded by modern manufacturing.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China best Linear Motion Bearing Needle Roller Bearing Bf5032/Lns5032   with Best SalesChina best Linear Motion Bearing Needle Roller Bearing Bf5032/Lns5032   with Best Sales
editor by CX 2024-02-22

high quality

linear bearing

Considerations for Selecting the Right Type and Size of Linear Bearing

Choosing the appropriate type and size of linear bearing requires careful consideration of various factors to ensure optimal performance and compatibility with the application. Here are important considerations to keep in mind:

  • 1. Load Capacity:

Determine the maximum load the linear bearing will need to support. Consider both static and dynamic loads to select a bearing that can handle the expected weight and forces.

  • 2. Speed and Acceleration:

Assess the required speed and acceleration of the linear motion. Different linear bearing types have different speed limitations, so choose one that can accommodate the desired motion profile.

  • 3. Precision and Accuracy:

If your application requires precise positioning, choose linear bearings that offer high accuracy and repeatability. Linear ball bearings are known for their precision, while linear roller bearings offer higher load capacity.

  • 4. Environment:

Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Select linear bearings that are designed to withstand the specific environmental conditions.

  • 5. Rail or Shaft Compatibility:

Ensure that the chosen linear bearing is compatible with the rail or shaft you intend to use. Proper fit and alignment are crucial for smooth motion and long bearing life.

  • 6. Space Constraints:

If your application has limited space, choose compact linear bearings that can fit within the available area without compromising performance.

  • 7. Maintenance Requirements:

Consider the level of maintenance your application can accommodate. Some linear bearings are self-lubricating, reducing the need for frequent maintenance.

  • 8. Noise Level:

For noise-sensitive environments, opt for linear bearings that provide quiet operation to avoid disruptions caused by excessive noise.

  • 9. Mounting Options:

Consider how the linear bearing will be mounted and integrated into your system. Different bearings may require specific mounting configurations.

  • 10. Cost and Budget:

Balance the desired features and performance with your budget constraints. While high-performance linear bearings may offer advanced features, they can also come at a higher cost.

By carefully evaluating these factors, you can choose the most suitable type and size of linear bearing for your specific application. Consulting with bearing manufacturers and engineers can also provide valuable insights to ensure the optimal selection.

linear bearing

Enhancing 3D Printers and Additive Manufacturing with Linear Bearings

Linear bearings play a crucial role in the efficient and precise operation of 3D printers and additive manufacturing processes. Here’s how they contribute to these technologies:

  • Precise Motion Control:

Linear bearings provide smooth and accurate linear motion control, ensuring precise positioning of the print head or build platform. This precision is essential for creating intricate and detailed 3D printed objects.

  • High Repeatability:

Linear bearings offer high repeatability, enabling the printer to consistently recreate complex geometries layer by layer. This is crucial for producing parts with consistent quality and dimensions.

  • Reduced Vibration and Wobble:

The smooth motion provided by linear bearings minimizes vibrations and wobbling during printing, leading to smoother surface finishes and improved print quality.

  • High-Speed Printing:

Linear bearings can handle high speeds, allowing 3D printers to operate at faster print speeds without sacrificing accuracy. This is beneficial for reducing overall print time.

  • Compact Design:

Many linear bearings have a compact and space-efficient design, which is important for fitting within the confined spaces of 3D printers while maintaining the required range of motion.

  • Low Friction and Wear:

Linear bearings are designed to minimize friction and wear, leading to longer lifespan and reduced maintenance requirements. This is especially important in additive manufacturing where continuous operation is desired.

  • Smooth Layer-by-Layer Building:

In additive manufacturing, linear bearings enable precise movement of the build platform or print head, ensuring that each layer is accurately aligned and built upon the previous layer.

  • Complex Geometries:

Linear bearings enable 3D printers to create complex and intricate geometries that require precise control over the movement of the print head and build platform.

Overall, linear bearings contribute to the success of 3D printing and additive manufacturing by providing the necessary motion control, precision, and reliability needed to create high-quality and intricate 3D printed objects.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

high quality high quality
editor by CX 2024-02-21

China best Ll1036 10X17X26 High Precision Compact Series Linear Bearing Kh10-P Kh10-PP Kh1026 Bearing bearing driver kit

Product Description

Product Description

Bearing No. Shape Dimension Basic load Rating
KN
Max Speed
rpm
Mass
Bore
d
Outer Diameter
D
Width
B
Radius r min Dynamic Static Grease Oil
mm mm mm mm Cr Cor  Kg
6000 Series
606 6 17 6 0.3 1.95 0.72 30000 38000 0.0057
607 7 19 6 0.3 2.88 1.08 28000 36000 0.0071
608 8 22 7 0.3 3.32 1.38 26000 34000 0.011
609 9 24 7 0.3 3.35 1.4 22000 30000 0.014
6000 10 26 8 0.3 4.58 1.98 20000 28000 0.018
6001 12 28 8 0.3 5.1 2.38 19000 26000 0.02
6002 15 32 9 0.3 5.58 2.85 18000 24000 0.026
6003 17 35 10 0.3 6 3.25 17000 22000 0.036
6004 20 42 12 0.6 9.38 5.02 15000 19000 0.069
6005 25 47 12 0.6 10.1 5.85 13000 17000 0.075
6006 30 55 13 1 10.18 6.91 10000 14000 0.116
6007 35 62 14 1 12.47 8.66 9000 12000 0.155
6008 40 68 15 1 13.1 9.45 8500 11000 0.185
6009 45 75 16 1 16.22 11.96 8000 10000 0.231
6571 50 80 16 1 16.94 12.95 7000 9000 0.25
6011 55 90 18 1.1 23.28 17.86 7000 8500 0.362
6012 60 95 18 1.1 24.35 19.35 6300 7500 0.385
6013 65 100 18 1.1 24.66 19.74 6000 7000 0.41
6014 70 110 20 1.1 29.68 24.2 5600 6700 0.575
6015 75 115 20 1.1 30.91 26.06 5300 6300 0.603
6016 80 125 22 1.1 36.57 31.36 5000 6000 0.821
6017 85 130 22 1.1 39.04 33.75 4500 5600 0.848
6018 90 140 24 1.5 44.63 39.16 4300 5300 1.1

WHY CHOOSE E-ASIA BEARING

1) 20 years of rich bearing industry export experience
2) ISO & MPA & CE & SGS & BV certified
3) Professional engineers team and Superior machines
4) 1 hour to HangZhou port or ZheJiang port
5) Strict quality inspection (3 steps) before shipment, such as SGS/BV third party certified.

We are  one of the most influential bearing suppliers and professional sales.  Our products categories mainly include: Auto bearing , Deep Groove Ball Bearings, Cylindrical Roller Bearings, Tapered Roller Bearings, Thrust Ball Bearings, Self-aligning Ball Bearings, Angular Contact Ball Bearings, Spherical Roller Bearings, Needle Bearings, linear Bearings, Pillow Block Bearings, the Ceramic Bearings, Joint Bearings, Slewing Bearings, Cam Followers Bearings and Electronic Bearings etc.

About the market of our products, except for our domestic market, our products meet to countries all over the world, such as Asia, Africa, South America, Europe, Middle east and etc. Because of the high quality level and good services, are accepted by all clients

Our company offers more than 25,000 different kinds of bearing. In addition, we can supply from stock and have enough stock  bearings ready for clients.

We are engaged in exporting brand bearings for many years, such as CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearing, and CZPT bearings. Also we are an agency of UBC bearings, GMN bearings and HangZhou CZPT bearings, HangZhou CZPT bearings, HangZhou HRB bearings.

 

 

High quality and long life bearings are the aim of  IKC Bearings, creatibg the naximum value for customers,our company is pushing forward moden managerment in full aspects and builds up own bearing brand “PLETON”,and will make in known at home and abroad.We will try our best to provide customers with excellent products and services,and are wishing to sincerely cooperate with customers from home and  abroad to achieve win-win.

 

1)Series: 6000 series, 6200 series, 6300 series and 6400 series,

2)Corresponding types: 605-6032, 625-6248, 6300-6344, 6403-6418

3)Material Used: GCr15-China, (AISI)52100-American, (Din)100Cr6-Germany,

4)Shield/closure: open bearing, Z, ZZ, RS,2RS,

5)Snap ring: N, NR

6)Vibration and noise level: Z1, Z2, Z3

7)Precision level: P0, P6, P5(ABEC-1, ABEC-3,ABEC-5

 

6000-2RS1/C3—-6040/C3     6000-2Z/C3—-6040/C3

 

6200-2RS1/C3—-6244/C3     6200-2Z/C3—-6244/C3

 

6300-2RS1/C3—-6344/C3     6300-2Z/C3—-6344/C3

 

6403-2RS1/C3—-6430/C3     6304-2Z/C3—-6430/C3 

Other bearings:

(1)Deep Groove Ball Bearing 6000 ,6200,6300,6900 series ( steel cage, brass cage ,     nylon cage)

 

 

(2)Spherical Roller Bearing 22200 22300 23000 24000 series ( steel cage CC, brass     cage, CA and MB)

 

(3)Pillow Block Bearing,UC UCP UCT UCF UCFL SBPFL series

 

(4)Taper Roller Bearing (single row, double row and four row )

 

(5)Cylindrical Roller Bearing ( steel cage, brass cage ,nylon cage)

 

(6)Thrust Ball Bearing ( steel cage, brass cage)

 

(7)Thrust Roller Bearing( steel cage, brass cage)

 

Company Profile

Packaging & Shipping

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
Most orders will be shipped within 3-5 days of payment being received.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
Do our best to meet customer needs, negotiable.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, account or account, we will contact you as soon as possible and provide the detailed information you need.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Brand: Koyo, Timken NSK NTN .
Precision: Z1V1 Z2V2 Z3V3
Cage: Steel, Nylon, Brass
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Differences Between Linear Ball Bearings and Linear Roller Bearings

Linear ball bearings and linear roller bearings are two distinct types of linear bearings, each with its own design and characteristics. Here’s how they differ and when they are preferred:

  • 1. Design:

Linear ball bearings use ball bearings to provide rolling motion along the shaft. Linear roller bearings, on the other hand, use cylindrical or needle rollers for motion. Roller bearings have a larger contact area, distributing the load over a broader surface.

  • 2. Load Capacity:

Linear roller bearings typically have a higher load-carrying capacity compared to linear ball bearings. This makes them suitable for applications with heavier loads and greater force requirements.

  • 3. Friction and Smoothness:

Linear ball bearings offer lower friction and smoother motion due to the point contact between the balls and the shaft. Roller bearings may have slightly higher friction but can handle larger loads without sacrificing smoothness.

  • 4. Precision and Accuracy:

Linear ball bearings are often preferred for applications requiring high precision and accuracy. Their point contact provides precise positioning and repeatability, making them suitable for tasks like CNC machining and optical systems.

  • 5. Noise and Vibration:

Linear ball bearings tend to generate less noise and vibration due to their smoother rolling action. Roller bearings may produce slightly more noise but are still used in applications where noise is not a critical factor.

  • 6. Speed:

Linear ball bearings are well-suited for high-speed applications due to their low friction and smooth motion. Roller bearings are also capable of high speeds but may have slightly different characteristics.

  • 7. Cost:

Linear ball bearings are often more cost-effective for lower-load and precision applications. Linear roller bearings may be preferred for heavy-duty applications, which may justify their higher cost.

  • 8. Application Scenarios:

Linear ball bearings are commonly used in applications where precision, smooth motion, and accuracy are paramount, such as in CNC machinery, 3D printers, and optical systems. Linear roller bearings excel in applications with higher loads, such as heavy machinery, material handling, and industrial automation.

In summary, the choice between linear ball bearings and linear roller bearings depends on the specific requirements of the application. Each type has its strengths and weaknesses, and selecting the right type ensures optimal performance and longevity.

linear bearing

Managing Contamination and Debris in Linear Bearings

Contamination and debris pose significant challenges to the proper functioning of linear bearings. However, various measures are employed to effectively manage these issues:

  • Preventive Sealing:

Linear bearings are often equipped with protective seals that act as barriers against contaminants. These seals prevent dust, dirt, and other particles from entering the bearing housing, thus reducing the risk of contamination.

  • Shielding:

Linear bearings can incorporate shields that offer an additional layer of protection against debris. Shields are designed to keep larger particles away from the bearing’s rolling elements, enhancing the bearing’s longevity.

  • Wipers and Scrapers:

Some linear bearings feature wipers or scrapers that actively remove debris from the bearing’s moving parts. These components help prevent the accumulation of contaminants that could compromise performance.

  • Regular Maintenance:

Periodic inspection and cleaning are crucial to maintaining the cleanliness of linear bearings. Routine maintenance procedures help identify and remove any foreign particles that may have entered the bearing housing.

  • Clean Environment:

Creating a clean operating environment is essential. In applications where contamination is a concern, steps are taken to minimize the presence of dust, dirt, and other pollutants in the vicinity of the linear bearings.

  • Proper Lubrication:

Lubrication not only reduces friction but also creates a barrier against contaminants. The lubricant can help prevent particles from adhering to bearing surfaces, facilitating their removal during maintenance.

  • Regular Inspections:

Frequent visual inspections can help identify early signs of contamination. Timely detection allows for prompt cleaning and maintenance, preventing further damage.

  • Appropriate Sealing Materials:

Using high-quality sealing materials that are resistant to wear and tear is essential. The right materials can effectively keep contaminants out while withstanding the operating conditions.

  • Choosing Suitable Environment:

Where possible, placing linear bearings in environments with lower levels of contamination or installing additional protective measures can help manage debris-related challenges.

By implementing these strategies, engineers and operators can effectively manage the challenges associated with contamination and debris, ensuring the optimal performance and longevity of linear bearings.

linear bearing

Factors to Consider When Selecting a Linear Bearing

Choosing the right linear bearing for a specific application involves considering several critical factors to ensure optimal performance and longevity:

  • Load Requirements:

Determine the magnitude and direction of the loads the linear bearing will experience. Consider both static and dynamic loads to select a bearing with an appropriate load capacity.

  • Precision and Accuracy:

For applications requiring precise positioning, choose linear bearings with high precision and low backlash. Factors like repeatability and positional accuracy are crucial.

  • Speed and Acceleration:

Consider the speed and acceleration at which the linear bearing will operate. Higher speeds may require bearings with lower friction and better heat dissipation.

  • Environmental Conditions:

Assess the environmental factors such as temperature, humidity, and exposure to contaminants. Choose linear bearings with suitable materials and seals to withstand the conditions.

  • Space Constraints:

Take into account the available space for mounting the linear bearing. Some applications may have limited space, necessitating compact and lightweight bearing options.

  • Maintenance Requirements:

Consider the maintenance needs of the bearing. Bearings with self-lubricating properties or easy access for lubrication can reduce maintenance frequency.

  • Mounting and Configuration:

Choose a linear bearing that can be easily mounted and integrated into your system’s design. Consider factors like mounting orientation and available mounting surfaces.

  • Life Expectancy:

Estimate the expected lifespan of the linear bearing based on the application’s requirements. Select a bearing with a suitable design life to prevent premature failures.

  • Cost and Budget:

Balance the desired performance with the available budget. Opt for linear bearings that provide the necessary features without exceeding cost limitations.

  • Accessories and Add-ons:

Consider any additional accessories or add-ons, such as seals, lubrication systems, or end caps, that can enhance the bearing’s performance and protection.

  • Manufacturer and Supplier:

Choose reputable manufacturers and suppliers that offer reliable products and good customer support. Quality assurance and technical assistance are essential.

Overall, a comprehensive assessment of these factors will help you select the most suitable linear bearing for your specific application, ensuring optimal performance, longevity, and cost-effectiveness.

China best Ll1036 10X17X26 High Precision Compact Series Linear Bearing Kh10-P Kh10-PP Kh1026 Bearing   bearing driver kitChina best Ll1036 10X17X26 High Precision Compact Series Linear Bearing Kh10-P Kh10-PP Kh1026 Bearing   bearing driver kit
editor by CX 2024-02-21

China factory CNC Machines Equipment Lmf6luu Lmf8luu Lmf10luu Lmf12luu Lmf13luu Lmf16luu Lmf20luu Lmf25luu Lmf30luu Lmf35luu Lmf40luu Lmf50luu Lmf60luu Linear Bearing manufacturer

Product Description

Product Description

CNC Machines Equipment LMF6LUU LMF8LUU LMF10LUU LMF12LUU LMF13LUU LMF16LUU LMF20LUU LMF25LUU LMF30LUU LMF35LUU LMF40LUU LMF50LUU LMF60LUU Linear Bearing

Introducing The High Sensitivity Linear Bearing, A Cutting-Edge Product Designed To Revolutionize Your Industrial Operations. Crafted With Utmost Precision And Engineered To Perfection, This Linear Bearing Guarantees Unparalleled Performance And Reliability. Whether You Are In The Manufacturing, Automation, Or Robotics Industry, This Product Is An Essential Component That Will Elevate Your Machinery To New Heights.

The High Sensitivity Linear Bearing Boasts Exceptional Durability And Longevity, Ensuring A Prolonged Lifespan Even In The Most Demanding Environments. Its Robust Construction, Coupled With Advanced Materials, Enables It To Withstand Heavy Loads And Resist Wear And Tear, Making It An Ideal Choice For High-Intensity Applications. With This Linear Bearing, You Can Rest Assured That Your Equipment Will Operate Smoothly And Efficiently, Minimizing Downtime And Maximizing Productivity.
 

Product name Linear Bearing
Trademark (brand) ANLD/OEM
port HangZhou/HangZhou/ZheJiang /HangZhou/HangZhou
Services Provide OEM services.
payment method L/C or T/T or D/P or Paypal
Feature Long Life, High Speed, Low Noise,Small friction resistance, not easy to damage

The High Sensitivity Linear Bearing Is Compatible Making It A Versatile Solution For Various Machinery And Equipment. Its Seamless Integration And Easy Installation Process Make It A Hassle-Free Addition To Your Existing Systems. Furthermore, This Linear Bearing Requires Minimal Maintenance, Saving You Valuable Time And Resources.

Featuring The Latest Technological Advancements, This Linear Bearing Offers Unrivaled Precision And Accuracy. Its High Sensitivity Allows For Precise Linear Motion, Ensuring Optimal Performance And Reducing The Risk Of Errors. This Level Of Precision Is Crucial In Industries Where Accuracy Is Paramount, Such As Cnc Machining, 3d Printing, And Medical Equipment Manufacturing.

Invest In The High Sensitivity Linear Bearing Today And Experience The Difference It Can Make In Your Operations. With Its Exceptional Durability, Precision, And Compatibility, This Product Is A Game-Changer In The World Of Linear Bearings. Trust In Our Expertise And Join Countless Industry Professionals Who Have Already Benefited From This Innovative Solution. Elevate Your Machinery To New Heights With The High Sensitivity Linear Bearing.

We Understand That Reliability And Performance Are Crucial Factors When Choosing A Linear Bearing. That Is Why Our Product Undergoes Rigorous Quality Control Measures To Meet The Highest Industry Standards. We Prioritize Customer Satisfaction And Strive To Provide You With A Product That Exceeds Your Expectations.

 

 

Whether You’Re Looking For A Reliable Bearing For Use In Automotive Manufacturing, Or You Need A High-Quality Component For Use In Precision Machinery, The High Precision For Auto Parts Deep Groove Ball Bearing Is The Perfect Choice. With Its Exceptional Performance, Reliability, And Precision, This Ball Bearing Is Sure To Exceed Your Expectations And Deliver Outstanding Results.
So Why Wait? If You’Re Looking For A Top-Quality Deep Groove Ball Bearing That Can Deliver Exceptional Performance And Reliability, Look No Further Than The High Precision For Auto Parts Deep Groove Ball Bearing. Order Yours Today And Experience The Difference For Yourself!

 

 

Detailed Photos

 

Product Parameters

Factory Inspection Is The Final Inspection That Must Be Carried Out On The Formally Produced Products At The Time Of Delivery To Check Whether The Quality Of The Products At The Time Of Delivery Has The Quality Confirmed In The Type Inspection. Products Can Be Delivered As Qualified Products Only After Passing The Factory Inspection.

Furthermore, Our Company Understands The Importance Of Timely Delivery And Excellent Customer Service. We Strive To Provide A Seamless Purchasing Experience, Ensuring That Your Orders Are Processed Efficiently And Delivered Promptly. Our Knowledgeable And Friendly Customer Support Team Is Always Available To Address Any Inquiries Or Concerns You May Have, Ensuring Your Satisfaction With Our Products And Services.

We Will Check All The Quality Before We Deliver The Goods To The Customer.

 

Packaging & Shipping

Logistics Refers To The Physical Flow Process From The Place Of Supply To The Place Of Receipt. Logistics Industry Is A Compound Or Aggregation Industry Formed By The Industrialization Of Logistics Resources.

Why Is Logistics Important?

• Create Added Value: Logistics Can Help Retailers Create Added Value By Ensuring They Can Deliver The Right Quality And Quantity Of Products To Their Customers. Logistics Means You Can Manage Your Entire Business More Efficiently.

•Increasing Efficiency: As Global Trade Becomes More Popular, Logistics Is Becoming An Important Part Of The Supply Chain, Reducing Costs Through Effective Collaboration With Other Businesses And Suppliers.

•Cost Savings: If You Have A Well-Managed Logistics Strategy, You Reduce The Risk That Something Will Go Wrong And Cause You To Spend Extra Money.

• Provide A Better Customer Experience: Logistics Ensures That Customers Get The Items They Want At The Quality They Expect. By Better Organizing Logistics, Businesses Can Respond Quickly To Customer Needs.

• Enhance Brand Reputation: Logistics Shows That Your Business Processes Have Been Properly Addressed, So You Can Deliver The Amazing Results Your Customers Expect. The Result Is Usually A Better Brand Image And More Sales.

We Have A Professional Logistics Company For Transportation, To Ensure That The Goods Can Be Delivered On Time And Safely

 

Company Profile

At HangZhou Chaokun Bearing Co.,Ltd, We Take Pride In Delivering Products That Exceed Industry Standards.With Its Exceptional Performance, Durability, And Precision, This Bearing Is Set To Elevate Your Industry Systems To New Heights.

HangZhou Chaokun Bearing Co., Ltd. Is A Research And Development Production And Sales In One Physical Factory,
The Main Products
• Deep Groove Ball Bearings
• Aligning Ball Bearings
• Cylindrical Roller Bearings
• Self-Aligning Roller Bearings
• Outer Spherical Bearings
• Angular Contact Bearings
• Thrust Ball Bearings
• Thrust Roller Bearings
The Chinese Brand CZPT CZPT Hrb C&U 2rs Ball Bearing Is A Top-Notch Product That Delivers Exceptional Performance And Reliability. With Its Advanced Design, Superior Sealing, And Trusted Brand Reputation, This Ball Bearing Is The Ideal Choice For Any B2b Platform. Trust In CZPT CZPT Hrb C&U To Provide You With The Highest Quality Bearings For Your Industrial Needs.

 

Our Advantages

Our advantage
1. OEM or Non-Stand Bearings: Any requirement for Nonstandard bearings is Easily Fulfilled by us due to its vast knowledge.
2. Genuine products With Excellent Quality: The company has always proved the 100% quality products it provides with genuine intent.
3. After Sales Service and Technical Assistance: The company provides after-sales service and technical assistance as per the
    customer’s requirements and needs.
4. Quick Delivery: The company provides just-in-time delivery with its streamlined supply chain. 

We Will Give The Factory Wholesale Price

FAQ

OEM policy

1. We can print your brand (logo, artwork) on the shield or laser engraving your brand on the shield.

2. We can customize your packaging according to your design

3. All copyright belongs to the customer, we promise not to disclose any information.
What is the minimum order

•Depending on the model, you can send me information for your calculati.

Are you a factory(manufacturer)
Yes, we have been engaged in bearing development and manufacturing industry for more than 20 years.
Which payment method does your company support
Do our best to meet customer needs, negotiable

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Low Temperature, Corrosion Resistant, High Temperature, High Speed
Function: for Linear Travel
Flange Shape: Square Trimmed Type Circular Ellipse
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China factory CNC Machines Equipment Lmf6luu Lmf8luu Lmf10luu Lmf12luu Lmf13luu Lmf16luu Lmf20luu Lmf25luu Lmf30luu Lmf35luu Lmf40luu Lmf50luu Lmf60luu Linear Bearing   manufacturerChina factory CNC Machines Equipment Lmf6luu Lmf8luu Lmf10luu Lmf12luu Lmf13luu Lmf16luu Lmf20luu Lmf25luu Lmf30luu Lmf35luu Lmf40luu Lmf50luu Lmf60luu Linear Bearing   manufacturer
editor by CX 2024-02-20

China manufacturer Linear Motion Bearing Linear Bearing with Low Price carrier bearing

Product Description

COMPANY OVERVIEW
HangZhou CZPT Precision Machinery Co., Ltd. established in 2009, it is a professional supplier of hydraulic chrome plated piston rods ,inducton linear shaft, linear motion bearing ,linear guide, linear module and ball screw etc. Our company located in HangZhou, which is a foreign trade oriented economic developed city, adjacent to international port city ZheJiang .  

Linear Motion Bearings Main Products:
 Linear motion ball bearing ,Flanged linear motion ball bearing ,Linear motion ball bearing slide units,Support rail units,Shaft sport,Shafts ,etc. The main type as belows :

Application: 1. Automatic controlling machine
2. Semi-conductor industry
3. General industry machinery
4. Medical equipment
5. Solar energy equipment
6. Machine tool
7. Parking system
8. High-speed rail and aviation transportation equipment, etc
Product Description
Linear Motion Ball Bearing

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: High Precision/Rigidity
Shape: Standard
Series: Lm/Lme/Lml/Lmel
Material: Bearing Steel
Type: Universal
Transport Package: Paper Sleeve and Wooden Box
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Enhancing 3D Printers and Additive Manufacturing with Linear Bearings

Linear bearings play a crucial role in the efficient and precise operation of 3D printers and additive manufacturing processes. Here’s how they contribute to these technologies:

  • Precise Motion Control:

Linear bearings provide smooth and accurate linear motion control, ensuring precise positioning of the print head or build platform. This precision is essential for creating intricate and detailed 3D printed objects.

  • High Repeatability:

Linear bearings offer high repeatability, enabling the printer to consistently recreate complex geometries layer by layer. This is crucial for producing parts with consistent quality and dimensions.

  • Reduced Vibration and Wobble:

The smooth motion provided by linear bearings minimizes vibrations and wobbling during printing, leading to smoother surface finishes and improved print quality.

  • High-Speed Printing:

Linear bearings can handle high speeds, allowing 3D printers to operate at faster print speeds without sacrificing accuracy. This is beneficial for reducing overall print time.

  • Compact Design:

Many linear bearings have a compact and space-efficient design, which is important for fitting within the confined spaces of 3D printers while maintaining the required range of motion.

  • Low Friction and Wear:

Linear bearings are designed to minimize friction and wear, leading to longer lifespan and reduced maintenance requirements. This is especially important in additive manufacturing where continuous operation is desired.

  • Smooth Layer-by-Layer Building:

In additive manufacturing, linear bearings enable precise movement of the build platform or print head, ensuring that each layer is accurately aligned and built upon the previous layer.

  • Complex Geometries:

Linear bearings enable 3D printers to create complex and intricate geometries that require precise control over the movement of the print head and build platform.

Overall, linear bearings contribute to the success of 3D printing and additive manufacturing by providing the necessary motion control, precision, and reliability needed to create high-quality and intricate 3D printed objects.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China manufacturer Linear Motion Bearing Linear Bearing with Low Price   carrier bearingChina manufacturer Linear Motion Bearing Linear Bearing with Low Price   carrier bearing
editor by CX 2024-02-20