Hot selling

linear bearing

Differences Between Linear Ball Bearings and Linear Roller Bearings

Linear ball bearings and linear roller bearings are two distinct types of linear bearings, each with its own design and characteristics. Here’s how they differ and when they are preferred:

  • 1. Design:

Linear ball bearings use ball bearings to provide rolling motion along the shaft. Linear roller bearings, on the other hand, use cylindrical or needle rollers for motion. Roller bearings have a larger contact area, distributing the load over a broader surface.

  • 2. Load Capacity:

Linear roller bearings typically have a higher load-carrying capacity compared to linear ball bearings. This makes them suitable for applications with heavier loads and greater force requirements.

  • 3. Friction and Smoothness:

Linear ball bearings offer lower friction and smoother motion due to the point contact between the balls and the shaft. Roller bearings may have slightly higher friction but can handle larger loads without sacrificing smoothness.

  • 4. Precision and Accuracy:

Linear ball bearings are often preferred for applications requiring high precision and accuracy. Their point contact provides precise positioning and repeatability, making them suitable for tasks like CNC machining and optical systems.

  • 5. Noise and Vibration:

Linear ball bearings tend to generate less noise and vibration due to their smoother rolling action. Roller bearings may produce slightly more noise but are still used in applications where noise is not a critical factor.

  • 6. Speed:

Linear ball bearings are well-suited for high-speed applications due to their low friction and smooth motion. Roller bearings are also capable of high speeds but may have slightly different characteristics.

  • 7. Cost:

Linear ball bearings are often more cost-effective for lower-load and precision applications. Linear roller bearings may be preferred for heavy-duty applications, which may justify their higher cost.

  • 8. Application Scenarios:

Linear ball bearings are commonly used in applications where precision, smooth motion, and accuracy are paramount, such as in CNC machinery, 3D printers, and optical systems. Linear roller bearings excel in applications with higher loads, such as heavy machinery, material handling, and industrial automation.

In summary, the choice between linear ball bearings and linear roller bearings depends on the specific requirements of the application. Each type has its strengths and weaknesses, and selecting the right type ensures optimal performance and longevity.

linear bearing

Enhancing 3D Printers and Additive Manufacturing with Linear Bearings

Linear bearings play a crucial role in the efficient and precise operation of 3D printers and additive manufacturing processes. Here’s how they contribute to these technologies:

  • Precise Motion Control:

Linear bearings provide smooth and accurate linear motion control, ensuring precise positioning of the print head or build platform. This precision is essential for creating intricate and detailed 3D printed objects.

  • High Repeatability:

Linear bearings offer high repeatability, enabling the printer to consistently recreate complex geometries layer by layer. This is crucial for producing parts with consistent quality and dimensions.

  • Reduced Vibration and Wobble:

The smooth motion provided by linear bearings minimizes vibrations and wobbling during printing, leading to smoother surface finishes and improved print quality.

  • High-Speed Printing:

Linear bearings can handle high speeds, allowing 3D printers to operate at faster print speeds without sacrificing accuracy. This is beneficial for reducing overall print time.

  • Compact Design:

Many linear bearings have a compact and space-efficient design, which is important for fitting within the confined spaces of 3D printers while maintaining the required range of motion.

  • Low Friction and Wear:

Linear bearings are designed to minimize friction and wear, leading to longer lifespan and reduced maintenance requirements. This is especially important in additive manufacturing where continuous operation is desired.

  • Smooth Layer-by-Layer Building:

In additive manufacturing, linear bearings enable precise movement of the build platform or print head, ensuring that each layer is accurately aligned and built upon the previous layer.

  • Complex Geometries:

Linear bearings enable 3D printers to create complex and intricate geometries that require precise control over the movement of the print head and build platform.

Overall, linear bearings contribute to the success of 3D printing and additive manufacturing by providing the necessary motion control, precision, and reliability needed to create high-quality and intricate 3D printed objects.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

Hot selling Hot selling
editor by CX 2024-04-22

China factory Linear Guide and Bearing Hgw20ca for Industrial Automation bearing and race

Product Description

Linear Xihu (West Lake) Dis. And Bearing TRH20A For Industrial Automation
Features:
1.High positioning accuracy, high repeatability
The linear guideway is a design of rolling motion with a low friction coeffi cient, and the diff erence between dynamic and static friction is very small. Therefore, the stick-slip will not occur when submicron feeding is making. 

2.Low frictional resistance, high precision maintained for long period
The frictional resistance of a linear guideway is only 1/20th to 1/40th of that in a slide guide. With a linear guideway, a well lubrication can be easily achieved by supplying grease through the grease nipple on carriage or utilizing a centralized oil pumping system, thus the frictional resistance is decreased and the accuracy could be maintained for long period.

3.Suitable for high speed operation
Due to the characteristic of low frictional resistance, the required driving force is much lower than in other systems, thus the power consumption is small. Moreover, the temperature rising effect is small even under high speed operation.

4.Easy installation with interchangeability
Compared with the high-skill required scrapping process of conventional slide guide, the linear guideway can offer high precision even if the mounting surface is machined by milling or grinding. Moreover the interchangeability of linear guideway gives a convenience for installation and future maintenance.

Model list:

Application:
1. Automatic controlling machine
2. Semi-conductor industry
3. General industry machinery
4. Medical equipment
5. Solar energy equipment
6. Machine tool
7. Parking system
8. High-speed rail and aviation transportation equipment, etc.

Package & Shipping:
1.Package: Carton or wooden case
2.Delivery time: 15 days after receiving the deposit
3.Shipping: by express (DHL, TNT, FedEx, etc.) or by sea

Our service:
1. Help customer to choose correct model, with CAD & PDF drawing for your reference.
2. Professional sales team, make your purchase smooth.
3. During warranty period, any quality problem of CZPT product, once confirmed, we will send a new 1 to replace.

Company information:
HangZhou CZPT Transmission Machinery Co., Ltd, is a specialized manufacturer in linear motion products in China, which was established in 1999. Based on the strong technical strength, outstanding quality and high capacity, we have a good reputation both in China and abroad, and now we have many customers all over the world. Our main products are ball screw, ball spline, linear guide, linear bearing, mono stage, machine tool spindle, ball screw support unit and locknut. You may find more information on our website at www.toco.tw.

FAQ:

1.Q: Why choose TOCO?
  A: Professional mechanical manufacture for years with full experience, direct factory price.
2.Q: What payment method do you accept?
  A: We accept T/T, L/C, DP, WesternUnion.
3.Q: What’s the time of delivery? 
  A: It’s subject to your order quantity and our production schedule, usually 7-15 days after receiving the deposit.
4.Q: What’s your guarantee peroid?
  A: CZPT provides 1 year quality guarantee for the products from your purchase date, except the artificial damage.

Any question or special requirement, please feel free to contact us.

ADD: NO.11 Jinying 1st street, chenwu village,Houjie town  HangZhou city ZheJiang province China.
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: Cold-Resistant, Heat-Resistant, Wear-Resistant, High Temperature-Resistance
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car
Surface Treatment: Polishing
Material: Carbon Steel
Model: HGH, Hgw, Egh, Egw, Mgn, Mgw.
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Contribution of Linear Bearings to CNC Machining Efficiency and Accuracy

Linear bearings play a crucial role in enhancing the efficiency and accuracy of Computer Numerical Control (CNC) machining processes. Here’s how they contribute:

  • 1. Enhanced Precision:

Linear bearings provide smooth and precise linear motion along machine axes. This precision is essential for achieving tight tolerances and accurate dimensions in machined parts.

  • 2. Reduced Friction and Wear:

Low friction in linear bearings minimizes energy loss and heat generation during movement. This reduces wear on the components and extends the lifespan of the machine, resulting in consistent performance over time.

  • 3. Smooth Motion Control:

Linear bearings enable controlled and predictable motion, allowing CNC machines to execute complex tool paths with smooth transitions. This is crucial for producing intricate shapes and achieving high-quality surface finishes.

  • 4. Minimized Vibration and Noise:

The smooth operation of linear bearings reduces vibration and noise levels during machining. This is especially important for maintaining a stable machining environment and producing parts with minimal surface imperfections.

  • 5. Rapid Traverse Speeds:

Linear bearings facilitate rapid movements of machine components between machining operations. This increases the efficiency of the machining process, reducing cycle times and increasing overall productivity.

  • 6. High Acceleration and Deceleration:

Linear bearings allow CNC machines to accelerate and decelerate rapidly without sacrificing precision. This capability is advantageous for optimizing machining time while maintaining accuracy.

  • 7. Improved Repeatability:

Linear bearings ensure consistent and repeatable motion, resulting in parts that match design specifications precisely across multiple production runs.

  • 8. Flexibility in Design:

Linear bearings enable the design of compact and space-efficient CNC machines. Their small footprint allows for more efficient use of manufacturing floor space.

In summary, linear bearings significantly enhance CNC machining by providing accurate, smooth, and controlled motion. This translates into higher precision, reduced wear, improved surface finishes, and increased productivity. Whether it’s milling, turning, or other CNC processes, linear bearings are essential for achieving the level of accuracy and efficiency demanded by modern manufacturing.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China factory Linear Guide and Bearing Hgw20ca for Industrial Automation   bearing and raceChina factory Linear Guide and Bearing Hgw20ca for Industrial Automation   bearing and race
editor by CX 2024-04-22

high quality

linear bearing

Challenges and Solutions for Addressing Friction and Wear in Linear Bearings

Friction and wear are common challenges in linear bearings that can impact their performance and lifespan. Here are the challenges and some solutions to address them:

  • 1. Challenge: Friction:

Friction between the bearing components can lead to increased energy consumption, heat generation, and reduced efficiency.

  • Solution: Lubrication:

Proper lubrication is essential to minimize friction. Lubricants reduce the contact between moving parts, allowing smoother motion and reducing wear. Choosing the right lubricant and applying it correctly can significantly mitigate friction-related issues.

  • 2. Challenge: Wear:

Continuous movement can lead to wear on the bearing surfaces, affecting precision and performance over time.

  • Solution: Regular Maintenance:

Implementing a regular maintenance schedule can help monitor wear and replace worn components before they compromise performance. This includes cleaning, re-lubrication, and periodic inspection of the bearing’s condition.

  • 3. Challenge: Contaminants:

Dust, debris, and foreign particles can enter the bearing system, leading to increased friction and accelerated wear.

  • Solution: Sealing and Protection:

Using seals, covers, or protective enclosures can help prevent contaminants from entering the bearing system. These protective measures maintain the integrity of the lubricant and extend the bearing’s lifespan.

  • 4. Challenge: Improper Installation:

If linear bearings are not installed correctly, misalignment and uneven load distribution can contribute to friction and wear.

  • Solution: Precise Installation:

Follow manufacturer guidelines for proper installation, ensuring accurate alignment and even load distribution. This reduces the risk of premature wear and ensures optimal performance.

  • 5. Challenge: Inadequate Lubrication:

If the linear bearings are under-lubricated or over-lubricated, it can lead to increased friction and wear.

  • Solution: Lubrication Management:

Monitor and manage lubrication levels to ensure they are within the recommended range. Regularly assess the lubricant’s condition and replenish as needed to maintain optimal performance.

  • 6. Challenge: High Loads and Speeds:

High loads and speeds can increase friction and wear on linear bearings.

  • Solution: Proper Selection:

Select linear bearings that are designed to handle the specific loads and speeds of the application. This ensures that the bearings can operate effectively under the given conditions.

Addressing friction and wear challenges in linear bearings requires a combination of proper maintenance practices, appropriate lubrication, protective measures, and careful selection of bearings. By implementing these solutions, the performance and longevity of linear bearings can be optimized.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

high quality high quality
editor by CX 2024-04-19

China manufacturer Factory Supply Precision Linear Bearing Lm Lme Lmk Lmf Lmh Kh Series Square Flange Sliding Bearing for Shaft CNC Linear Motion System bearing and race

Product Description

BEARING RING

INCXIHU (WEST LAKE) DIS.INNERRING AND OUTERRING.MADE OF HIGHOUALITY STEELEFFICIENTEXTENSION OF BEARING LIFE.
ROLLING ELEMENTTRANSFERTHE LOAD BETWEENTHE INNERAND OUTERRINGS.

STEELBALLCAGE

REDUCE FRICTIONHEAT,OPTIMIZELOAD AND FAXIHU (WEST LAKE) DIS.TATE DISASSEMBLY

INTEGRAL SEAL

SIGNIFICANTLYEXTEND THE SERVICE LIFE OF BEARINGS,KEEPLUBRICANTSIN BEAR-NGS AND KEEP CONTAMINANTS OUT

Q:Are you trading company or manufacturer?
A:We are professional manufacturer for steel pipes,and our company also is a very protessional and technical foreign trade company for steel products. We have more export expenence with compettive price and best after-sales service Apart from this,we can provide a wide range of steel products to meet the requirement of customer.

Q:Can you send samples?
A:Of course, we can send samples to all parts of the world, our samples are free, but customers need to bear the courier costs.

Q:About product prices?
A:Prices vary from period to period due to cyclical changes in the price  of raw materials. 

Q:How long does your delivery time take?
A:In general, our delivery time is within 7-25 days, and may be delayed if the demand isextremely large or special circumstances occur.

Q:Does the product have quality inspection before loading?
A:Of course, all our products are strictly tested for quality before packaging, and unqualified products will be destroyed.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Vacuum, Magnetically, Low Temperature, Corrosion Resistant, High Temperature, High Speed
Function: Super
Flange Shape: Cutting-Edge
Shape: Open
Series: LM
Material: Bearing Steel
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Slides

Linear bearings play a crucial role in ensuring the smooth movement and operation of industrial conveyors and linear slides. Their contributions are as follows:

  • Reduced Friction:

Linear bearings are designed to minimize friction between moving components, facilitating smooth motion of conveyors and linear slides. This reduces wear and tear, energy consumption, and the need for frequent maintenance.

  • Precision Movement:

Linear bearings enable precise positioning and controlled movement. This precision is vital for conveyors and slides that require accurate placement of materials, products, or components.

  • Stability and Load Distribution:

Linear bearings distribute loads evenly across the bearing surface, enhancing stability and preventing uneven wear. This is especially important for conveyors that handle varying loads and linear slides that support heavy components.

  • Quiet and Vibration-Free Operation:

Linear bearings contribute to quiet and vibration-free operation. This is crucial in environments where noise reduction and minimal vibrations are essential for the comfort of operators and the integrity of products.

  • Efficient Energy Transfer:

Linear bearings ensure efficient energy transfer by reducing energy losses due to friction. This efficiency is particularly beneficial in systems where multiple conveyors or slides are connected, improving overall system performance.

  • Longevity and Reliability:

Linear bearings enhance the longevity and reliability of conveyors and slides by reducing wear on moving parts. This results in extended operational lifespans and reduced downtime for maintenance.

  • Flexibility and Customization:

Linear bearings come in various designs and sizes, allowing for customization to suit specific conveyor or slide requirements. This adaptability is valuable for accommodating different loads and motion profiles.

  • Wide Range of Industries:

Linear bearings find application in industries such as manufacturing, logistics, packaging, and material handling, where conveyors and linear slides are essential components of the workflow.

In summary, linear bearings contribute significantly to the efficient, precise, and reliable movement of industrial conveyors and linear slides. Their ability to reduce friction, ensure stability, and support heavy loads enhances the overall performance of these systems.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China manufacturer Factory Supply Precision Linear Bearing Lm Lme Lmk Lmf Lmh Kh Series Square Flange Sliding Bearing for Shaft CNC Linear Motion System   bearing and raceChina manufacturer Factory Supply Precision Linear Bearing Lm Lme Lmk Lmf Lmh Kh Series Square Flange Sliding Bearing for Shaft CNC Linear Motion System   bearing and race
editor by CX 2024-04-19

China Good quality Smooth High-Speed Router Machine Part Lm6uu Linear Guide Rail Bearing carrier bearing

Product Description

Product Description

Linear bearings are a linear motion system for the combination
of linear travel and cylindrical shafts. Because the bearing balls are
in contact with the outer point of the bearing, the steel ball rolls with
the minimum frictional resistance, so the friction of the linear bearing
is small and stable, and does not change with the bearing speed, so
the linear motion can obtain high sensitivity and high precision. The
consumption of linear bearings also has its limitations. The most
important is that the impact load capacity of the bearings is poor
and the bearing capacity is poor. Secondly, the linear bearings
have large vibration and noise at high speeds.

 

Linear bearings are made of cages in which the balls are
guided together with raceway segments and seals or shields.
Linear bearings are capable of carrying heavy loads and can be
used with closed or adjustable housings. We manufacture high
quality linear bearings in chrome steel or stainless steel with
hardened outer sleeves. There are also adjustable diameter
series chrome steel linear ball bearings with hardened jackets.
Our factory produces open linear ball bearings, with jacket
hardened balls and hardened steel ball cages. All FOCUS products
are of the highest quality and are designed to fully meet your
precision parts needs. Our technicians and engineers will also
work on customizing linear bearings to meet your individual needs.

 

Our Advantages

High precision, low noise, high speed, long life, high reliability, heavy load and high temperature resistance.
Strong Products

                                      Factory                                                                                                         Transportation

Certificate

Application

Cnc Lathes
Grinding Machines
Precision Machining Machines
Heavy Cutting Machines
Automation Devices
Transportation Equipment
Measuring Equipment
Devices Requiring High Positional Accuracy
High Speed Transportation Equipment
Precision Measuring Equipment
Semiconductor Manufacturing Equipment
Woodworking Machinery

FAQ

Q: Are you trading company or manufacturer ?
A: We are factory.

Q: Can I get a sample to check out the quality?
A: Sure, free samples are available for stock products if you can pay for the shipping cost.

Q: What if I receive defective products for my order?
A: All our bearings are 100% inspected strictly before packing. If any defective products received, please provide photos and video to show us the problem and help us improve the quality. New products will be sent to you as replacement if the probelm is product quality.

Q: When can I get the price?

A: after we get your inquiry, usually within 2-6 hours. Urgent will be faster.

Q:what can you buy from us?
A:Wheel bearing,Automobile hub unit bearing,Automobile tapered roller bearing,Deep groove ball bearing,Automobile air conditioner bearing.

 Other models

  MODEL NO.
LM linear bearing LM 3UU, LM 4UU, LM 5UU, LM 6UU, LM 8UU, LM 10UU, LM 12UU, LM 13UU, LM 16UU, LM 20UU, LM 25UU, LM 30UU, LM 35UU, LM 40UU, LM 50UU, LM 60UU, LM 80UU, LM 100UU, LM 120UU, LM 150UU

LM Open Series

linear bearing

LM 10OPUU, LM 12OPUU, LM 13OPUU, LM 16OPUU, LM 20OPUU, LM 25OPUU, 
LM 30OPU, LM 35OPUU, LM 40OPUU, LM 50OPUU, LM60OPUU, LM 80OPUU, LM 100OPUU, LM 120OPUU, LM150OPUU
LB linear bearing LB 6UU, LB 8UU, LB 10UU, LB 12UU, LB13 UU, LB16UU, LB 20UU, LB25UU, 
LB 30UU, LB 35UU, LB 40UU, LB 50UU, LB 60UU, LB 80UU, LB 100UU, LB120UU, LB 150UU
LM E Linear bearing LME 5UU, LME 8UU, LME 12UU, LME 16UU, LME 20UU, LME 25UU, LME 30UU, LME 40UU, LME 50UU, LME 60UU, LME 80UU
LM  L linear bearing LM 6LUU, LM 8LUU, LM 10LUU, LM 12LUU, LM 13LUU, LM 16LUU, LM 20LUU, LM 25LUU, LM 30LUU, LM 35LUU, LM 40LUU, LM 50LUU, LM 60LUU
KH type linear bearing KH 0622PP,KH 0824PP, KH 1026PP, KH 1228PP, KH 1630PP, KH 2030PP, 
KH 2540PP, KH 3050PP, KH 4060PP, KH5070PP

Steel Cage

Linear Bearing

LM 12GA, LM 16GA, LM 20GA, LM 25GA, LM 30GA, 
LM 12M, LM 16M, LM 20M, LM 25M, LM30M
SDM series Stell cage linear bearing(As same as Ease SDM series) SDM 16, SDM 20, SDM 25, SDM 30, SDM 35, SDM 40, SDM 50, SDM 60, SDM 80, SDM 100, SDM120, SDM150
SK Linear bearing SK 10, SK 12, SK 13, SK 16, SK 20, SK 25, SK 30, SK 35, SK 40
SHF Linear bearing SHF 10, SHF 12,  SHF 13, SHF 16, SHF 20, SHF 25, SHF 30, SHF 35, SHF 40

Flange type

linear bearing

LMF6UU, LMF8UU, LMF10UU, LMF12UU, LMF13UU, LMF16UU, LMF20UU, LMF25UU, LMF30UU, LMF35UU, LMF40UU, LMF50UU, LMF60UU, LMF80UU, LMF100UU
LMK6UU, LMK8UU, LMK10UU, LMK12UU, LMK13UU, LMK16UU, LMK20UU, LMK25UU, LMK30UU, LMK35UU, LMK40UU, LMK50UU, LMK60UU, LMK80UU, LMK100UU

LMT6UU,LMT8UU,LMT10UU,LMT12UU,LMT13UU,LMT16UU,LMT20UU,

LMT25UU,LMT30UU

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Corrosion Resistant, High Speed
Function: Super
Flange Shape: Circular
Shape: Flange
Series: LM
Material: Chrome Steel
Samples:
US$ 10/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Design Principles and Functionalities of Linear Bearings

Linear bearings are designed with specific principles to facilitate controlled linear motion along a single axis. These design principles contribute to their functionalities, making them essential components in various applications:

  • Rolling Elements:

Linear bearings typically feature rolling elements, such as balls or rollers, that move along a track or rail. These rolling elements reduce friction and enable smooth linear motion.

  • Guiding Mechanism:

Linear bearings incorporate a guiding mechanism to constrain the motion to a single axis. This guiding mechanism ensures that the linear bearing moves precisely along the desired path.

  • Load Distribution:

The design of linear bearings allows for effective distribution of loads, both in the radial and axial directions. This load distribution ensures stability and prevents excessive stress on individual components.

  • Rail or Track:

Linear bearings typically run along a rail or track that provides a smooth and accurate path for the rolling elements. The rail is designed to resist wear and maintain its precision over time.

  • Cage or Carriage:

Linear bearings use a cage or carriage to house the rolling elements and maintain their proper spacing. This arrangement ensures even load distribution and smooth movement.

  • Sealing and Lubrication:

Linear bearings often incorporate sealing mechanisms to protect the rolling elements from contaminants and to retain lubrication. Proper lubrication ensures smooth motion and extends the bearing’s lifespan.

  • Mounting Options:

Linear bearings are designed to be mounted in various ways, depending on the application’s requirements. Mounting options include flange-mounted, base-mounted, or end-supported configurations.

  • Adjustability:

Many linear bearings are designed with provisions for adjustment, allowing users to fine-tune the preload or clearance to optimize performance and minimize play.

  • Materials:

Linear bearings are constructed from materials that offer high wear resistance, durability, and corrosion resistance. Common materials include steel, stainless steel, and various engineering plastics.

  • Accessories:

Accessories such as end caps, seals, and lubrication systems can enhance the functionality and lifespan of linear bearings by providing protection and ensuring proper maintenance.

Functionalities of linear bearings include providing precise linear motion, guiding components along a defined path, minimizing friction, distributing loads, and maintaining stability. The design principles ensure reliable operation and make linear bearings indispensable in applications requiring controlled and accurate linear motion.

China Good quality Smooth High-Speed Router Machine Part Lm6uu Linear Guide Rail Bearing   carrier bearingChina Good quality Smooth High-Speed Router Machine Part Lm6uu Linear Guide Rail Bearing   carrier bearing
editor by CX 2024-04-17

China Custom Deep Groove Ball Tapered Roller Angular Contact Linear Bearing Bearing All Kinds of Bearing with So Many Brand wheel bearing

Product Description

Product Parameters

 

Product Name

   Angular Contact Ball Bearing 7009

Material

Chrome Steel

Place of Origin

China

Feature

Low noise,low libration,long life

Number of Row

Single Row

Inside diameter

  45mm

Outside Diameter

  75mm

Packing

According to the buyer requests for packaging 

Product Description

 


 

Detailed Photos

 

Application of Bearing

 

Strict Testing Produre

 

Company Profile

 

 

Packaging & Shipping

 

FAQ

Q: Are you trading company or manufacturer ?

 A: We are factory.We have our own brand:HQA .If you interested in our product,I can take you to visit our factory.

 Q: How long is your delivery time?
 A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is  according to quantity.

Q: Where is your factory located? How can I visit there?
 A: Our factory is located in ZheJiang Province,You can take the high-speed rail or plane to visit.

Q: Do you provide samples ? it is free charge?
 A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q:The MOQ is how much?
 A: About ordinary standard type of bearing ,We have rich inventory,not have MOQ,if your need a 
     product is Non-standard size,need customize,we will according the product size to determine the MOQ.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Aligning: Non-Aligning Bearing
Separated: Separated
Feature: Low Temperature, Corrosion Resistant, High Temperature, Low Viberation
Rows Number: Single
Raceway: Spherical Raceway
Material: Bearing Steel
Samples:
US$ 0.01/Set
1 Set(Min.Order)

|
Request Sample

linear bearing

Challenges and Solutions for Addressing Friction and Wear in Linear Bearings

Friction and wear are common challenges in linear bearings that can impact their performance and lifespan. Here are the challenges and some solutions to address them:

  • 1. Challenge: Friction:

Friction between the bearing components can lead to increased energy consumption, heat generation, and reduced efficiency.

  • Solution: Lubrication:

Proper lubrication is essential to minimize friction. Lubricants reduce the contact between moving parts, allowing smoother motion and reducing wear. Choosing the right lubricant and applying it correctly can significantly mitigate friction-related issues.

  • 2. Challenge: Wear:

Continuous movement can lead to wear on the bearing surfaces, affecting precision and performance over time.

  • Solution: Regular Maintenance:

Implementing a regular maintenance schedule can help monitor wear and replace worn components before they compromise performance. This includes cleaning, re-lubrication, and periodic inspection of the bearing’s condition.

  • 3. Challenge: Contaminants:

Dust, debris, and foreign particles can enter the bearing system, leading to increased friction and accelerated wear.

  • Solution: Sealing and Protection:

Using seals, covers, or protective enclosures can help prevent contaminants from entering the bearing system. These protective measures maintain the integrity of the lubricant and extend the bearing’s lifespan.

  • 4. Challenge: Improper Installation:

If linear bearings are not installed correctly, misalignment and uneven load distribution can contribute to friction and wear.

  • Solution: Precise Installation:

Follow manufacturer guidelines for proper installation, ensuring accurate alignment and even load distribution. This reduces the risk of premature wear and ensures optimal performance.

  • 5. Challenge: Inadequate Lubrication:

If the linear bearings are under-lubricated or over-lubricated, it can lead to increased friction and wear.

  • Solution: Lubrication Management:

Monitor and manage lubrication levels to ensure they are within the recommended range. Regularly assess the lubricant’s condition and replenish as needed to maintain optimal performance.

  • 6. Challenge: High Loads and Speeds:

High loads and speeds can increase friction and wear on linear bearings.

  • Solution: Proper Selection:

Select linear bearings that are designed to handle the specific loads and speeds of the application. This ensures that the bearings can operate effectively under the given conditions.

Addressing friction and wear challenges in linear bearings requires a combination of proper maintenance practices, appropriate lubrication, protective measures, and careful selection of bearings. By implementing these solutions, the performance and longevity of linear bearings can be optimized.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Linear Slides

Linear bearings play a crucial role in ensuring the smooth movement of industrial conveyors and linear slides by providing low-friction support and guiding mechanisms. Here’s how linear bearings contribute to their operation:

  • Smooth Motion: Linear bearings offer precise and smooth linear motion to conveyors and linear slides, allowing materials or objects to move seamlessly along a defined path.
  • Low Friction: The design of linear bearings minimizes friction between the moving parts, reducing energy consumption and wear. This is particularly important for conveyors and slides that require frequent and continuous movement.
  • Guidance: Linear bearings guide the movement of the conveyor belts or linear slides, ensuring that they stay on track and follow the desired path without deviation.
  • Load Support: Linear bearings provide support for both radial and axial loads, allowing conveyors to carry heavy loads and linear slides to accommodate objects or components without sacrificing smoothness.
  • Precision: Linear bearings offer high precision and accuracy, which is essential for applications where precise positioning is required, such as in automated manufacturing processes.
  • Reduced Noise and Vibration: Linear bearings contribute to quieter operation by reducing noise and absorbing vibrations generated during movement. This is beneficial in environments where noise reduction is important.
  • Longevity: By minimizing friction and wear, linear bearings enhance the longevity of conveyors and linear slides, reducing the need for frequent maintenance and replacement.

In industrial settings, linear bearings ensure that conveyors efficiently transport materials, products, or components, while linear slides provide controlled and accurate movement for various applications. Whether in manufacturing, logistics, or automation, the use of linear bearings results in enhanced efficiency, reduced downtime, and improved overall performance.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China Custom Deep Groove Ball Tapered Roller Angular Contact Linear Bearing Bearing All Kinds of Bearing with So Many Brand   wheel bearingChina Custom Deep Groove Ball Tapered Roller Angular Contact Linear Bearing Bearing All Kinds of Bearing with So Many Brand   wheel bearing
editor by CX 2024-04-17

China wholesaler 30212/30213/30304/30306 Tapered Roller/china wholesale/Engine/motorcycle/tractor/wheel/linear guide/steel ball/Diesel generator sets/auto/gear/1688 bearing with Hot selling

Product Description

Product Parameters

Tapered Roller Bearing
Single Row Tapered Roller Bearing
Bearing No. dxDxTxBxC (mm) Weight(kg)   Bearing No. dxDxTxBxC (mm) Weight(kg)
35712 15 35 12 7 5 0.050    30302 15 42 14.25 13 11 0.098 
35713 17 40 13.25 12 11 0.080    30303 17 47 15.25 14 12 0.134 
35714 20 47 15.25 14 12 0.127    30304 20 52 16.25 16 13 0.176 
35715 25 52 16.25 15 13 0.154    30305 25 62 18.25 17 15 0.272 
35716 30 62 17.25 16 14 0.241    30306 30 72 20.75 19 16 0.408 
35717 35 72 18.25 17 15 0.344    30307 35 80 22.75 21 18 0.540 
35718 40 80 19.75 18 16 0.435    30308 40 90 25.25 23 20 0.769 
35719 45 85 20.75 19 16 0.495    30309 45 100 27.25 25 22 1.571 
35710 50 90 21.75 20 17 0.563    3571 50 110 29.25 27 23 1.310 
35711 55 100 22.75 21 18 0.713    3571 55 120 31.5 29 25 1.660 
35712 60 110 23.75 22 19 0.949    3571 60 130 33.5 31 27 1.960 
35713 65 120 24.75 23 20 1.180    3571 65 140 36 33 28 2.550 
35714 70 125 26.25 24 21 1.260    3571 70 150 38 35 30 3.060 
35715 75 130 27.25 25 22 1.410    3571 75 160 40 37 31 3.570 
35716 80 140 28.25 26 22 1.720    3 0571 80 170 42.5 39 33 4.410 
35717 85 150 30.5 28 24 2.140    3 0571 85 180 44.5 41 34 5.200 
35718 90 160 32.5 30 26 2.660    3 0571 90 190 46.5 43 36 6.030 
35719 95 170 34.5 32 27 3.070    3571 95 200 49.5 45 38 6.980 
35710 100 180 37 34 29 3.780    30320 100 215 51.5 47 39 8.560 
                             
31305 25 62 18.25 17 13 0.284                 
31306 30 72 20.75 19 14 0.398                 
31307 35 80 22.75 21 15 0.530                 
31308 40 90 25.25 23 17 0.738                 
31311 55 120 31.5 29 21 1.590                 
31313 65 140 36 33 23 2.420                 
31314 70 150 38 35 25 2.920                 
31315 75 160 40 37 26 3.470                 
31316 80 170 42.5 39 27 4.110                 
31317 85 180 44.5 41 28 4.850                 
31318 90 190 46.5 43 30 5.660                 
31320 100 215 56.5 51 35 8.670                 
                             
                             

01 Roller Bearing

Cylindrical Roller Bearings Spherical Roller Bearings
Taper Roller Bearings Needle Roller Bearings

02 Applications
  

Main Applications
Automobile Others
Front Wheel Machine Tool Spindles
Rear Wheel Construction Machinery
Gearbox Large Agricultural Machinery
Differential Pinion Shaft Railroad Vehicle Gear Reducers
  Mill Spokes And Reducers
***Suitable for Heavy Loads and Shock Loads***

 

Packaging & Shipping

 

Company Profile

About Us
Focus on a variety of industries
Provide maintenance solutions
Optimize customer inventory and reduce cost
 

What We Do
Comprehensive product range:

– Bearings
– Oil seals, Transmission belt
– Chain and Sprocket
– Hub assembly & Wheel bearings
– Coupling, castings
– Linear motion

Our Advantages

1. We have the most advanced bearing process equipment, CNC automatic facilities, and testing instruments.
2. We manufacture ball bearings and mounted bearing units, and also provide a strong full range of products, including electric motors and components One-stop partnerships products from our audited supply chain.
3. All products are manufactured exclusively by companies with ISO 9001:2008 certified Quality Systems which use state-of-the-art machines. The quality path starts from the beginning to deliver and goods’ quality trackable

 

Advantage
Advanced Automatic Lines Comprehensive Range
Premium Quality Sustainability

Our Values
Behavior-based, service-oriented, focused on results and committed to continuous improvement

Factory
To be a leader in providing the best valuable (Reasonable cost, Reliable quality) supply of precision rollers.
Providing this value, will help our customers remain competitive in the global marketplace.

Please see detailed introduction about our manufacturing process and measuring process.

Advantage Manufacturing Processes and Quality Control:
01Heat Treatment
02 Centerless Grinding Machine 11200 (most advanced)
03 Automatic Production Lines for Raceway
04 Automatic Production Lines for Raceway
05 Ultrasonic Cleaning of Rings
06 Automatic Assembly
07 Ultrasonic Cleaning of Bearings
08 Automatic Greasing, Seals Pressing
09Measurement of Bearing Vibration (Acceleration)
10 Measurement of Bearing Vibration (Speed)
11 Laser Marking
12 Automatic Packing

 

Quality Warranty

Granville as a manufacturer of high quality products, guarantees compliance with the highest standards relative to the use of the best steel quality in the production process, the highest standards in the design of contact surfaces, as well as the most efficient packing and lubrication of parts. From material coming, quality control through all processes. Except interal test, goods to third party inspection if required. After the center of inspection and experiment being founded, effective methods of inspecting all kinds of raw materials are mastered and then the reliability of bearings is ensured. One of our main objectives is the continued improvement in the quality of our products and processes, in pursuit of which we obtained ISO certification 9001:2008 and TS16949. 

After Sales Service

  1. Optimize customer inventory and reduce cost
  2. Provide maintenance solutions

FAQ

 

Q1.Can you accept OEM and customization?
A: Yes. We can customize it according to the samples and drawings you provide.

Q2.Do you keep a stock of these things?
A: In stocks

Q3.Can you provide samples free of charge?
A: Yes. We can provide samples free of charge. But the freight is paid by the customer.

Q4.What’s the delivery date?
A:The delivery time of sample orders is 3 working days.The bulk orders are 5-10 working days.

Q5: Why your price is higher than others?
A: Price = quality . We firmly believe that by the quality of the customer is always get more reliable than on price . So we insist on doing high-quality products.

Q6:What kind of transport do you have ?
A: According to the weight,we will choose the most appropriate mode of transport for you. Our freight forwarding is efficient and cheap.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Sample unit price depends on the specific model
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China wholesaler 30212/30213/30304/30306 Tapered Roller/china wholesale/Engine/motorcycle/tractor/wheel/linear guide/steel ball/Diesel generator sets/auto/gear/1688 bearing   with Hot sellingChina wholesaler 30212/30213/30304/30306 Tapered Roller/china wholesale/Engine/motorcycle/tractor/wheel/linear guide/steel ball/Diesel generator sets/auto/gear/1688 bearing   with Hot selling
editor by CX 2024-04-17

China wholesaler Wj506 Distributor Original CZPT CZPT CZPT CZPT CZPT CZPT Ball Bearing 6000 6002 6004 6006 6008 6200 Tapper Roller Bearing Linear Bearing Deep Groove Ball Bearing with Great quality

Product Description

Product Description

WHY CHOOSE E-ASIA BEARING?

1) 20 years of rich bearing industry export experience
2) ISO & MPA & CE & SGS & BV certified
3) Professional engineers team and Superior machines
4) 1 hour to HangZhou port or ZheJiang port
5) Strict quality inspection (3 steps) before shipment, such as SGS/BV third party certified.

CHOOSE E-ASIA       REFUSED ONE TIME BUSINESS

Deep groove ball bearing 5 88506 88507 88508A 88508 88509 622 62303 62304 62305 62306 62307 62308 62309 62310
Taper roller bearings 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35714 35716 35718 35710 35712 35714 35716 35710 35714 30302 30303 30304 30305 30306 30307 30308 3 3 0571 3 0571 3 0 30321 30322 30324 30326 30328 30330 30332 30334 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32224 32226 32228 32230 32232 32236 32238 32240 32244 32248 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32324 32326 32330 32334 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31324 31326 31328 31332 32 325714 320726 325718 53856k 53860
Self-aligning ball bearings
spherical plain bearing GE4E GE5E GE6E GE8E GE10E GE12E GE15ES GE17ES GE20ES GE25ES GE30ES GE35ES GE40ES GE45ES GE50ES GE60ES GE70ES GE80ES GE90ES GE1 110145 120155 130170 140180 150190 165710
Thrust ball bearing 511 234415 234416 234417 234418 234419 234420 234421 234422 234424 234426 234428 234430 234432 234438 234440 234714 234715 234716 234717 234718 234719 234720 234721 234722 234722 347262 347282 347302 347322 347382 34740
Cylindrical Roller Bearings NU313EMA NU2313EMA NU2314EMA NU415EMA NU216EMA NU2216EMA NJ2216EMA NUP2216EMA NU316EMA NU2316EMA NU217EMA NU2217EMA NU317EMA NU2317EMA NJ2317EMA NU218EMA NJ218EMA NU2218EMA NJ2218EMA NUP2218EMA NU318EMA NJ318EMA NU2318EMA NJ2318EMA NU219EMA NJ219EMA NU2219EMA NJ2219EMA NU319EMA NJ319EMA NU2319EMA NJ2319EMA NU220EMA NJ220EMA NU2220EMA NJ2220EMA NU320EMA NJ320EMA NU2320EMA NJ2320EMA NU222EMA NJ222EMA NU2222EMA NJ2222EMA NU322EMA NJ322EMA NU2322EMA NJ2322EMA NU1571MA NU224EMA NJ224EMA NU2224EMA NJ2224EMA NU324EMA NJ324EMA NU2324EMA NJ2324EMA NU1026MA NU226EMA NJ226EMA NU2226EMA NJ2226EMA NU326EMA NJ326EMA NU2326EMA NJ2326EMA NU1571MA NU228EMA NJ228EMA NU2228EMA NJ2228EMA NU328EMA NJ328EMA NU2328EMA NJ2328EMA NU1030MA NU230EMA NJ230EMA NUP230EMA NU2230EMA NJ2230EMA N2230EMB NU330EMA NJ330EMA NU2330EMA NJ2330EMA NU1032MA NU232EMA NJ232EMA NUP232EMA NU2232EMA NJ2232EMA NU332EMA NJ332EMA NU2332EMA NJ2332EMA NU1034MA NU3034EMA NU234EMA NJ234EMA NU2234EMA NJ2234EMA NU334EMA NJ334EMA NU2334EMA NJ2334EMA NU1036MA NU236EMA NJ236EMA NU2236EMA NJ2236EMA NU336EMA NJ336EMA NU2336EM NJ2336EMA NU1038MA NU238EMA NJ238EMA NU2238EMA NJ2238EMA NU338EMA NJ338EMA NU2338EMA NJ2338EMA NU1040MA NU240EMA NJ240EMA NU2240EMA NJ2240EMA NU340EMA NJ340EMA NU2340EMA NJ2340EMA NU1044MA NJ1044MA NU3044EMA NU244EMA NJ244EMA NU2244EMA NJ2244EMA NU344EMA NJ344EMA NU2344EMA NJ2344EMA N2344EMB NU1048MA NU248EMA NJ248EMA NU348EMA NJ348EMA NU2348EMA NJ2348EMA NU1052MA NU3052MA NU252MA NUP252MA NU2252MA NU2352EMA NU1056MA NU1060MA NU1964MA NF2964EMB NU1064MA NU2264MA NF2968EMB NU1068MA NU3068EMA NU3168EMA NU2372EMA NU1072MA NU1076MA NJ2980EMA NU1080MA NU2080EMA NF2984EMB NU1088MA NU2088EMA NU3188EMA NJ2892EMA NF2992EMB NU3192EMA NU1096EMA NJ1096EMA NU31/500EMA NU18/560MA NU30/600EMA NU20/630EMA NU20/670EMA NU20/670EMA NU30/670EMA NJ28/710EMA NJ29/710MA NU20/750EMA NU20/800EMA NU20/850EMA NU39/900EMA NU20/900EMA NJ18/1120EMA105RU32 105RN32 105RJ32 105RF32 105RT32 170RU51 170RN51 170RJ51 170RF51 170RT51 170RU91 170RN91 170RJ91 170RF91 170RT91 170RU93 170RN93 170RJ93 170RF93 170RT93 180RU51 180RN51 180RJ51 180RF51 180RT51 180RU91 180RN91 180RJ91 180RF91 180RT91 190RU91 190RN91 190RJ91 190RF91 190RT91 190RU92 190RN92 190RJ92 190RF92 190RT92 200RU91 200RN91 200RJ91 200RF91 200RT91 200RU92 200RN92 200RJ92 200RF92 200RT92 210RU92 210RN92 210RJ92 210RF92 210RT92 220RU51 220RN51 220RJ51 220RF51 220RT51 220RU91 220RN91 220RJ91 220RF91 220RT91 220RU92 220RN92 220RJ92 220RF92 220RT92 240RU91 240RN91 240RJ91 240RF91 240RT91 250RU91 250RN91 250RJ91 250RF91 250RT91NCF2922V NCF2924V NCF2926V NCF2928V NCF2930V NCF2932V NCF2934V NCF2936V NCF2938V NCF1840V NCF2940V NCF1844V NCF2944V NCF1852V NCF2952V NCF2960V NCF1864V NCF2964V NCF1868V NCF1876V NCF2976V NCF1880V NCF1884V NCF1888V NCF1892V NCF2992V NCF2996V NCF18/500V NCF29/500V NCF18/530V NCF18/560V NCF18/600V NCF18/630V NCF18/670V NCF18/710V NCF18/750V NCF18/800VNNU4930MAW33 NNU4932MAW33 NNU4934MAW33 NNU4936MAW33 NNU4938MAW33 NNU4940MAW33 NNU4140MAW33 NNU4944MAW33 NNU4144MAW33 NNU4948MAW33 NNU4148MAW33 NNU4952MAW33 NNU4152MAW33 NNU4956MAW33 NNU4156MAW33 NNU4960MAW33 NNU4160MAW33 NNU4964MAW33 NNU4164MAW33 NNU4968MAW33 NNU4068MAW33 NNU4168MAW33 NNU4972MAW33 NNU4072MAW33 NNU4172MAW33 NNU4976MAW33 NNU4076MAW33 NNU4176MAW33 NNU4980MAW33 NNU4080MAW33 NNU4180MAW33 NNU4984MAW33 NNU4084MAW33 NNU4184MAW33 NNU4988MAW33 NNU4088MAW33 NNU4188MAW33 NNU4992MAW33 NNU4092MAW33 NNU4192MAW33 NNU4996MAW33 NNU4096MAW33 NNU4196MAW33 NNU49/500MAW33 NNU40/500MAW33 NNU49/530MAW33 NNU40/530MAW33 NNU49/560MAW33 NNU49/600MAW33 NNU49/630MAW33 NNU49/670MAW33 NNU40/670MAW33 NNU49/710MAW33 NNU49/750MAW33 NNU49/800MAW33 NNU49/850MAW33 NNU49/900MAW33
 

Company Profile

        E-Asia was set up in 1996 and located at HangZhou, a beautiful city in China. Our company is bearing manufacturer and NSK CZPT CZPT CZPT CZPT HRB LYC NACHI C&U bearing distributor. We also provide OEM beaings.Since it was first established, E-AISA was dedicated in research, development and manufacture of bearings. Now, E-AISA has become main and 1 of the first grade suppliers of all kinds of bearings.
          Our products include: Deep Groove Ball Bearings, Self-aligning Ball Bearings, Spherical Bearings, Tapered Roller Bearings,Cylindrical Roller Bearings, Needle Roller Bearings, Self-aligning Roller Bearings, Angular Contact Ball Bearings, Thrust Ball Bearings and Trust Roller Bearings and Special Bearings.
        E-Asia is a backbone enterprise for bearing production in China. With an area of 60, 000 square meters, more than 260 sets devices and machines, and around 200 employees, our company annually turns out more than 6 million sets bearings.

        Our Bearings are exported to the USA, Canada, UK, Germany, Poland, Italy, Russia, the Middle East, Africa and other countries and regions of the world. E-Asia Bearing Co. Ltd. Is committed to the introduction of high-quality bearing products. Our company have more than 200 employees.
        Our brands include ZWZ bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings and so forth.

 
Our belief is “Specialization is quality; Quality is the future. Any product with 0.01% defect is 100% reject” is our quality policy.

Packaging & Shipping

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
Most orders will be shipped within 3-5 days of payment being received.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
Do our best to meet customer needs, negotiable.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, account or account, we will contact you as soon as possible and provide the detailed information you need.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Auto Clutch Bearing
Material: Chrome Steel
Tolerance: P5
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Contribution of Linear Bearings to CNC Machining Efficiency and Accuracy

Linear bearings play a crucial role in enhancing the efficiency and accuracy of Computer Numerical Control (CNC) machining processes. Here’s how they contribute:

  • 1. Enhanced Precision:

Linear bearings provide smooth and precise linear motion along machine axes. This precision is essential for achieving tight tolerances and accurate dimensions in machined parts.

  • 2. Reduced Friction and Wear:

Low friction in linear bearings minimizes energy loss and heat generation during movement. This reduces wear on the components and extends the lifespan of the machine, resulting in consistent performance over time.

  • 3. Smooth Motion Control:

Linear bearings enable controlled and predictable motion, allowing CNC machines to execute complex tool paths with smooth transitions. This is crucial for producing intricate shapes and achieving high-quality surface finishes.

  • 4. Minimized Vibration and Noise:

The smooth operation of linear bearings reduces vibration and noise levels during machining. This is especially important for maintaining a stable machining environment and producing parts with minimal surface imperfections.

  • 5. Rapid Traverse Speeds:

Linear bearings facilitate rapid movements of machine components between machining operations. This increases the efficiency of the machining process, reducing cycle times and increasing overall productivity.

  • 6. High Acceleration and Deceleration:

Linear bearings allow CNC machines to accelerate and decelerate rapidly without sacrificing precision. This capability is advantageous for optimizing machining time while maintaining accuracy.

  • 7. Improved Repeatability:

Linear bearings ensure consistent and repeatable motion, resulting in parts that match design specifications precisely across multiple production runs.

  • 8. Flexibility in Design:

Linear bearings enable the design of compact and space-efficient CNC machines. Their small footprint allows for more efficient use of manufacturing floor space.

In summary, linear bearings significantly enhance CNC machining by providing accurate, smooth, and controlled motion. This translates into higher precision, reduced wear, improved surface finishes, and increased productivity. Whether it’s milling, turning, or other CNC processes, linear bearings are essential for achieving the level of accuracy and efficiency demanded by modern manufacturing.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China wholesaler Wj506 Distributor Original CZPT CZPT CZPT CZPT CZPT CZPT Ball Bearing 6000 6002 6004 6006 6008 6200 Tapper Roller Bearing Linear Bearing Deep Groove Ball Bearing   with Great qualityChina wholesaler Wj506 Distributor Original CZPT CZPT CZPT CZPT CZPT CZPT Ball Bearing 6000 6002 6004 6006 6008 6200 Tapper Roller Bearing Linear Bearing Deep Groove Ball Bearing   with Great quality
editor by CX 2024-04-17

China supplier Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way/Slewing/Pillow Block/Thin Section/Engine/Fyh Bearing/China Wholesale 6824 wholesaler

Product Description

The rings and balls of all-ceramic deep groove ball bearings are made of silicon nitride (Si3N4) ceramic material. This bearing can be designed as a full ball or with PTFE, PEEK or stainless steel 304/316 cage. PTFE is the default standard cage.
Full ceramic deep groove ball bearings have the characteristics of non-magnetic and electrical insulation, wear-resistant and corrosion-resistant, oil-free and self-lubricating, high temperature and cold resistance, and can be used in extremely harsh environments and special working conditions. It can be used in high temperature environment above 400ºC under the condition of full ball or equipped with stainless steel 316 cage. The PEEK cage can also be used at temperatures above 250°C. For CZPT temperatures (for example, lower than -70°C), full ceramic bearings with PTFE cages or stainless steel 316 cages can be used. Normally, the normal radial clearance is C0. When it is necessary to adapt to the extreme environment, other clearances can be customized.

open size(mm) Installation size (mm) weight weight
model Inner diameter Outer diameter Thickness Chamfer da da Da ra Si3N4 ZrO2
d D B r(min) min max max max (kg) (kg)
683 3 7 2 0.1   /     0.00013 0.00571
693 8 3 0.15   /     0.00571 0.0005
603 9 3 0.15   /     0.0004 0.0007
623 10 4 0.15   /     0.0007 0.0013
633 13 5 0.15   /     0.0014 0.0571
684 4 9 2.5 0.1 4.8 / 8.2 0.1 0.0003 0.0005
694 11 4 0.15 5.2 / 9.8 0.15 0.0007 0.0013
604 12 4 0.2 5.6 / 10.4 0.2 0.0009 0.0017
624 13 5 0.2 5.6 / 11.4 0.2 0.0013 0.571
634 16 5 0.3 6 / 14 0.3 0.0571 0.004
685 5 11 3 0.15 6.2 / 9.8 0.15 0.0005 0.0009
695 13 4 0.2 6.6 / 11.4 0.2 0.001 0.0019
605 14 5 0.2 6.6 / 12.4 0.2 0.0015 0.0571
625 16 5 0.3 7 / 14 0.3 0.0571 0.0038
635 19 6 0.3 7 / 17 0.3 0.0036 0.0066
686 6 13 3.5 0.15 7.2 / 11.8 0.15 0.0008 0.0015
696 15 5 0.2 7.6 / 13.4 0.2 0.0016 0.003
606 17 6 0.3 8 / 15 0.3 0.0571 0.0046
626 19 6 0.3 8 / 17 0.3 0.0034 0.0063
636 22 7 0.3 8 / 20 0.3 0.0058 0.5718
687 7 14 3.5 0.15 8.2 / 12.8 0.15 0.0009 0.0017
697 17 5 0.3 9 / 15 0.3 0.0571 0.004
607 19 6 0.3 9 / 17 0.3 0.0032 0.0059
627 22 7 0.3 9 / 20 0.3 0.0053 0.0098
637 26 9 0.3 9 / 24 0.3 0.01 0.0185
688 8 16 4 0.2 9.6 / 14.4 0.2 0.0014 0.0571
698 19 6 0.3 10 / 17 0.3 0.003 0.0056
608 22 7 0.3 10 / 20 0.3 0.005 0.0093
628 24 8 0.3 10 / 22 0.3 0.0072 0.013
638 28 9 0.3 10 / 26 0.3 0.012 0.571
689 9 17 4 0.2 10.6 / 15.4 0.2 0.0015 0.0571
699 20 6 0.3 11 / 18 0.3 0.0035 0.0065
609 24 7 0.3 11 / 22 0.3 0.006 0.011
629 26 8 0.3 11 / 24 0.3 0.0081 0.015
639 30 10 0.6 13 / 26 0.6 0.015 0.571
6800 10 19 5 0.3 12 12 17 0.3 0.0571 0.004
6900 22 6 0.3 12 12.5 20 0.3 0.0038 0.007
6000 26 8 0.3 12 13 24 0.3 0.0075 0.014
6200 30 9 0.6 14 16 26 0.6 0.013 0.571
6300 35 11 0.6 14 16.5 31 0.6 0.571 0.04
6801 12 21 5 0.3 14 14 19 0.3 0.0571 0.005
6901 24 6 0.3 14 14.5 22 0.3 0.0042 0.008
16001 28 7 0.3 14 / 26 0.3 0.0079 0.015
6001 28 8 0.3 14 15.5 26 0.3 0.0092 0.017
6201 32 10 0.6 16 17 28 0.6 0.015 0.571
6301 37 12 1 17 18 32 1 0.571 0.046
6802 15 24 5 0.3 17 17 22 0.3 0.571 0.005
6902 28 7 0.3 17 17 26 0.3 0.0063 0.012
16002 32 8 0.3 17 / 30 0.3 0.011 0.571
6002 32 9 0.3 17 19 30 0.3 0.013 0.571
6202 35 11 0.6 19 20.5 31 0.3 0.019 0.035
6302 42 13 1 20 22.5 37 1 0.035 0.064
6803 17 26 5 0.3 19 19 24 0.3 0.571 0.005
6903 30 7 0.3 19 19.5 28 0.3 0.0071 0.013
16003 35 8 0.3 19 / 33 0.3 0.014 0.571
6003 35 10 0.3 19 21.5 33 0.3 0.017 0.032
6203 40 12 0.6 21 23.5 36 0.6 0.571 0.052
6303 47 14 1 22 25.5 42 1 0.047 0.087
6403 62 17 1.1 23.5 / 55.5 1 0.11 0.21
6804 20 32 7 0.3 22 22.5 30 0.3 0.007 0.013
6904 37 9 0.3 22 24 35 0.3 0.015 0.571
16004 42 8 0.3 22 / 40 0.3 0.02 0.037
6004 42 12 0.6 24 25.5 38 0.6 0.571 0.052
6204 47 14 1 25 26.5 42 1 0.045 0.082
6304 52 15 1.1 26.5 28 45.5 1 0.06 0.11
6404 72 19 1.1 26.5 / 65.5 1 0.17 0.31
6805 25 37 7 0.3 27 27 35 0.3 0.009 0.016
6905 42 9 0.3 27 28.5 40 0.3 0.018 0.032
16005 47 8 0.3 27 / 45 0.3 0.571 0.045
6005 47 12 0.6 29 30 43 0.6 0.033 0.061
6205 52 15 1 30 32 47 1 0.054 0.099
6305 62 17 1.1 31.5 36 55.5 1 0.098 0.18
6405 80 21 1.5 33 / 72 1.5 0.22 0.41
6806 30 42 7 0.3 32 32 50 1 0.01 0.018
6906 47 9 0.3 32 34 57 1 0.571 0.04
16006 55 9 0.3 32 42.5 65.5 1 0.036 0.067
6006 55 13 1 35 36.5 53 1 0.048 0.089
6206 62 16 1 35 38.5 60 1 0.083 0.15
6306 72 19 1.1 36.5 42.5 68.5 1 0.14 0.27
6406 90 23 1.5 54 / 82 2 0.31 0.57
6807 35 47 7 0.3 37 37 45 0.3 0.011 0.571
6907 55 10 0.6 39 39 51 0.6 0.031 0.058
16007 62 9 0.3 37 / 60 0.3 0.045 0.082
6007 62 14 1 40 41.5 57 1 0.063 0.12
6207 72 17 1.1 41.5 44.5 65.5 1 0.12 0.22
6307 80 21 1.5 43 47 72 1.5 0.19 0.36
6407 100 25 1.5 43 / 92 1.5 0.4 0.73
6808 40 52 7 0.3 42 42 50 0.3 0.013 0.02
6908 62 12 0.6 44 46 58 0.6 0.05 0.09
16008 68 9 0.3 42 / 66 0.3 0.05 0.1
6008 68 15 1 45 47.5 63 1 0.08 0.15
6208 80 18 1.1 46.5 50.5 73.5 1 0.15 0.28
6308 90 23 1.5 48 53 80 1.5 0.27 0.49
6408 110 27 2 49 / 101 2 0.513 0.946
6809 45 58 7 0.3 47 47.5 56 0.3 0.016 0.571
6909 68 12 0.6 49 50 64 0.6 0.053 0.097
16009 75 10 0.6 49 / 71 0.6 0.07 0.13
6009 75 16 1 50 53.5 70 1 0.1 0.19
6209 85 19 1.1 51.5 55.5 78.5 1 0.175 0.32
6309 100 25 1.5 53 61.5 92 1.5 0.345 0.64
6409 120 29 2 54 / 111 2 0.64 1.18
6810 50 65 7 0.3 52 52.5 63 0.3 0.571 0.038
6910 72 12 0.6 54 55 68 0.6 0.06 0.1
16571 80 10 0.6 54 / 76 0.6 0.07 0.13
6571 80 16 1 55 58.5 75 1 0.11 0.2
6210 90 20 1.1 56.5 60 83.2 1 0.19 0.35
6310 110 27 2 59 68 101 2 0.44 0.82
6410 130 31 2.1 61 / 119 2 0.78 1.45
6811 55 72 9 0.3 57 59 70 0.3 0.03 0.06
6911 80 13 1 60 61.5 75 1 0.08 0.15
16011 90 11 0.6 59 / 86 0.6 0.11 0.2
6011 90 18 1.1 61.5 64 83.5 1 0.16 0.29
6211 100 21 1.5 63 66.5 92 1.5 0.26 0.48
6311 120 29 2 64 72.5 111 2 0.57 1.05
6411 140 33 2.1 66 / 129 2 0.95 1.76
6812 60 78 10 0.3 62 64 76 0.3 0.04 0.08
6912 85 13 1 65 66 80 1 0.08 0.15
16012 95 11 0.6 64 / 91 0.6 0.12 0.22
6012 95 18 1.1 66.5 69 88.5 1 0.17 0.32
6212 110 22 1.5 68 74.5 102 1.5 0.33 0.6
6312 130 31 2.1 71 79 119 2 0.72 1.32
6412 150 35 2.1 71   139 2 1.15 2.13
6813 65 85 10 0.6 69 69 81 0.6 0.05 0.1
6913 90 13 1 70 71.5 85 1 0.09 0.17
16013 100 11 0.6 69 / 96 0.6 0.13 0.23
6013 100 18 1.1 71.5 73 93.5 1 0.18 0.34
6213 120 23 1.5 73 80 112 1.5 0.42 0.77
6313 140 33 2.1 76 85.5 129 2 0.88 1.62
6814 70 90 10 0.6 74 74.5 86 0.6 0.056 0.1
6914 100 16 1 75 77.5 95 1 0.15 0.27
16014 110 13 0.6 74 / 106 0.6 0.18 0.34
6014 110 20 1.1 76.5 80.5 103.5 1 0.25 0.47
6214 125 24 1.5 78 84 117 1.5 0.45 0.84
6314 150 35 2.1 81 92 139 2 1.07 1.98
6815 75 95 10 0.6 79 79.5 91 0.6 0.06 0.11
6915 105 16 1 80 82 100 1 0.15 0.28
16015 115 13 0.6 79 / 111 0.6 0.19 0.36
6015 115 20 1.1 81.5 85.5 108.5 1 0.27 0.5
6215 130 25 1.5 83 90 122 1.5 0.5 0.92
6816 80 100 10 0.6 84 84.5 96 0.6 0.063 0.12
6916 110 16 1 85 87.5 105 1 0.16 0.3
16016 125 14 0.6 84 / 121 0.6 0.26 0.48
6016 125 22 1.1 86.5 91 118.5 1 0.36 0.67
6216 140 26 2 89 95.5 131 2 0.59 1.09
6817 85 110 13 1 90 90.5 105 1 0.11 0.2
6917 120 18 1.1 91.5 94.5 113.5 1 0.23 0.42
16017 130 14 0.6 89 / 126 0.6 0.27 0.5
6017 130 22 1.1 91.5 96 123.5 1 0.38 0.71
6217 150 28 2 94 102 141 2 0.73 1.35
6818 90 115 13 1 95 95.5 110 1 0.12 0.21
6918 125 18 1.1 96.5 98.5 118.5 1 0.24 0.45
16018 140 16 1 95 / 135 1 0.36 0.67
6018 140 24 1.5 98 103 132 1.5 0.5 0.92
6819 95 120 13 1 100 102 115 1 0.12 0.23
6919 130 18 1.1 101.5 104 123.5 1 0.25 0.46
16019 145 16 1 100 / 140 1 0.38 0.7
6019 145 24 1.5 103 109 137 1.5 0.51 0.95
6820 100 125 13 1 105 106 120 1 0.13 0.24
6920 140 20 1.1 106.5 111 133.5 1 0.35 0.64
16571 150 16 1 105 / 145 1 0.39 0.73
6571 150 24 1.5 108 113 142 1.5 0.54 0.99
6821 105 130 13 1 110 111 125 1 0.14 0.25
6921 145 20 1.1 111.5 116 138.5 1 0.36 0.66
6822 110 140 16 1 115 117 135 1 0.21 0.38
6922 150 20 1.1 116.5 121 143.5 1 0.37 0.69
6824 120 150 16 1 125 127 145 1 0.22 0.41

About us
ZheJiang REET BEARING.CO.,LTD is a professional bearing manufacturer and exporter.
We have a wealth of technical.All producing processes are finished in our manufactory. As an ISO9001:2000 certified manufacturer,we will solve various problems in application and use of our bearings. 
Our company is an authorized distributor of FAG, INA, CZPT and other world brand bearings.Our company has the right to self-export bearings and launches its own brand RTB.
Our bearing had been exported to more than 20 countries worldwide and are warmly welcomed.
We are looking forward to your order.
FAQ

1.Is the company a production factory or a trading company?
ZheJiang REET BEARING CO.,LTD is a manufacturing enterprise focusing on bearings and integrating research, production and sales.

2.How many the MOQ of your company?
Depending on the size of the bearing, the MOQ is variable, if you are interested, you can contact me for a quote.

3.Does the company accept OEM or customized bearings?
In addition to standard products, we also supply non-standard and modified standard products for special application. Meanwhile, we provide OEM service.

4.Can the company provide free samples?
We can provide samples for free. You only need to provide shipping.

5.What are the company’s delivery terms?
We can accept EXW,FOB,CFR,CIF,etc. You can choose the 1 which is the most convenient cost effective for you.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Aligning Bearing
Separated: Separated
Rows Number: Single
Load Direction: Radial Bearing
Material: Ceramic
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Signs of Wear or Damage in Linear Bearings and Maintenance

Identifying signs of wear or damage in linear bearings is essential for maintaining their performance and preventing costly failures. Here are common signs of wear and damage and how to address them:

  • 1. Increased Friction:

If you notice increased resistance during linear motion, it could indicate that the bearing components are wearing out. This can lead to reduced efficiency and accuracy.

  • Solution: Regular Lubrication:

Ensure proper lubrication of the bearings to minimize friction and prevent premature wear. Follow manufacturer recommendations for lubrication intervals and types.

  • 2. Uneven Movement:

If the linear motion becomes uneven, jerky, or experiences sudden stops, it may be due to damaged bearing components.

  • Solution: Inspection and Replacement:

Inspect the bearings and associated components for any signs of damage, such as dents or cracks. Replace any damaged parts to restore smooth motion.

  • 3. Abnormal Noise:

Unusual noises during linear motion, such as grinding or clicking sounds, can indicate friction and wear within the bearings.

  • Solution: Lubrication and Inspection:

Lubricate the bearings as recommended and inspect for any foreign particles or debris that might be causing the noise. Clean and replace components if necessary.

  • 4. Increased Play or Clearance:

If there is noticeable play or excessive clearance in the linear system, it can affect precision and lead to inaccuracies.

  • Solution: Adjustment or Replacement:

Check for loose bolts, misalignment, or worn components causing the play. Make necessary adjustments or replace worn parts to restore proper fit and function.

  • 5. Reduced Performance:

If your linear system is no longer achieving the desired accuracy or performance, it could be due to worn bearings.

  • Solution: Maintenance and Replacement:

Regularly perform maintenance tasks, such as cleaning, lubrication, and inspection. If performance does not improve, consider replacing the bearings with new ones.

  • 6. Visible Damage:

Any visible signs of physical damage, such as deformation, corrosion, or cracks, require immediate attention.

  • Solution: Replacement:

If the damage is severe, replace the damaged bearings promptly to avoid further issues.

Regular maintenance practices, including proper lubrication, cleaning, and inspection, are crucial for preventing wear and damage in linear bearings. Addressing any signs of wear early can extend the lifespan of the bearings and ensure consistent performance in various applications.

linear bearing

Enhancing 3D Printers and Additive Manufacturing with Linear Bearings

Linear bearings play a crucial role in the efficient and precise operation of 3D printers and additive manufacturing processes. Here’s how they contribute to these technologies:

  • Precise Motion Control:

Linear bearings provide smooth and accurate linear motion control, ensuring precise positioning of the print head or build platform. This precision is essential for creating intricate and detailed 3D printed objects.

  • High Repeatability:

Linear bearings offer high repeatability, enabling the printer to consistently recreate complex geometries layer by layer. This is crucial for producing parts with consistent quality and dimensions.

  • Reduced Vibration and Wobble:

The smooth motion provided by linear bearings minimizes vibrations and wobbling during printing, leading to smoother surface finishes and improved print quality.

  • High-Speed Printing:

Linear bearings can handle high speeds, allowing 3D printers to operate at faster print speeds without sacrificing accuracy. This is beneficial for reducing overall print time.

  • Compact Design:

Many linear bearings have a compact and space-efficient design, which is important for fitting within the confined spaces of 3D printers while maintaining the required range of motion.

  • Low Friction and Wear:

Linear bearings are designed to minimize friction and wear, leading to longer lifespan and reduced maintenance requirements. This is especially important in additive manufacturing where continuous operation is desired.

  • Smooth Layer-by-Layer Building:

In additive manufacturing, linear bearings enable precise movement of the build platform or print head, ensuring that each layer is accurately aligned and built upon the previous layer.

  • Complex Geometries:

Linear bearings enable 3D printers to create complex and intricate geometries that require precise control over the movement of the print head and build platform.

Overall, linear bearings contribute to the success of 3D printing and additive manufacturing by providing the necessary motion control, precision, and reliability needed to create high-quality and intricate 3D printed objects.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China supplier Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way/Slewing/Pillow Block/Thin Section/Engine/Fyh Bearing/China Wholesale 6824   wholesalerChina supplier Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way/Slewing/Pillow Block/Thin Section/Engine/Fyh Bearing/China Wholesale 6824   wholesaler
editor by CX 2024-04-16

Professional

linear bearing

Differences Between Linear Ball Bearings and Linear Roller Bearings

Linear ball bearings and linear roller bearings are two distinct types of linear bearings, each with its own design and characteristics. Here’s how they differ and when they are preferred:

  • 1. Design:

Linear ball bearings use ball bearings to provide rolling motion along the shaft. Linear roller bearings, on the other hand, use cylindrical or needle rollers for motion. Roller bearings have a larger contact area, distributing the load over a broader surface.

  • 2. Load Capacity:

Linear roller bearings typically have a higher load-carrying capacity compared to linear ball bearings. This makes them suitable for applications with heavier loads and greater force requirements.

  • 3. Friction and Smoothness:

Linear ball bearings offer lower friction and smoother motion due to the point contact between the balls and the shaft. Roller bearings may have slightly higher friction but can handle larger loads without sacrificing smoothness.

  • 4. Precision and Accuracy:

Linear ball bearings are often preferred for applications requiring high precision and accuracy. Their point contact provides precise positioning and repeatability, making them suitable for tasks like CNC machining and optical systems.

  • 5. Noise and Vibration:

Linear ball bearings tend to generate less noise and vibration due to their smoother rolling action. Roller bearings may produce slightly more noise but are still used in applications where noise is not a critical factor.

  • 6. Speed:

Linear ball bearings are well-suited for high-speed applications due to their low friction and smooth motion. Roller bearings are also capable of high speeds but may have slightly different characteristics.

  • 7. Cost:

Linear ball bearings are often more cost-effective for lower-load and precision applications. Linear roller bearings may be preferred for heavy-duty applications, which may justify their higher cost.

  • 8. Application Scenarios:

Linear ball bearings are commonly used in applications where precision, smooth motion, and accuracy are paramount, such as in CNC machinery, 3D printers, and optical systems. Linear roller bearings excel in applications with higher loads, such as heavy machinery, material handling, and industrial automation.

In summary, the choice between linear ball bearings and linear roller bearings depends on the specific requirements of the application. Each type has its strengths and weaknesses, and selecting the right type ensures optimal performance and longevity.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

Professional Professional
editor by CX 2024-04-16