Tag Archives: deep groove ball bearing

China Best Sales CNC Spider Jaw Coupling Lmh6uu Square Flange Linear Motion Bushing Bearing CNC deep groove ball bearing

Product Description

Product Description

  • Bearing structure: consists of outer cylinder, retainer, balls, side seals;
  • Premium grade raw material: GCr15 bearing steel cylinder, G10 class precision ball, PA66 plastic retainer;
  • Cylinder metal body is heat treated and hardened to enhance to the rigidity and working life;
  • Both the inner bore and outer cylinder surface are ground several procedures to guarantee the precision;
  • Completely washed by the super sonic washing machine, pre-lubricated;
  • Main features: high precision and rigidity, low friction, ease of assembly and replacement, good interchangeability;
  • Good quality at affordable rates, price is very economic and nice;
  • Ideal transmission component for linear motion movement, widely used in CNC machines, factory automation, industrial machines, electric tools, textile machines, fitting equipment, etc.;
  • Wide size range for option, models including(special size has to be customized): 
    LM3, LM4, LM5UU, LM6UU, LM8SUU, LM8UU, LM10UU, LM12UU, LM13UU, LM16UU, LM20UU, LM25UU, LM30UU, LM35UU, LM40UU, LM50UU, LM60UU, LM80UU, LM100UU, LM120UU, LM150UU, etc.
  •  

Product Parameters

Detailed Photos

 

 

Certifications

 

Packaging & Shipping

1.According to the quantity and the ship method of your order, we will choose the best packing ways.
2.For example, if the products shipped by TNT,DHL,FedEx, the goods would be packed by paper carton for economic delivery. As bulk order shipped by sea, the goods would be packed by wooden carton.

Our Advantages

FAQ

DO NOT worry about PRICE, we are manufacturer.

 

DO NOT worry about QUALITY, we have 16 years experience.

 

DO NOT worry about AFTER-SALES, we are 24 hours online.

Q1:Who we are?

We are the factory based in ZHangZhoug,China,start from 2007 sell to all over the.world.the factory area is around 45000 square meters.we have 900 employees.

 

Q2: Do you have a catalogue?

Can you send me the catalogue to have a check of all your products?

A: Yes , We have product catalogue.Please contact us on line or send an Email to sending the catalogue.

Q3: I can’t find the product on your catalogue, can you make this product for me?
A: Our catalogue shows most of our products,but not all.So just let us know what product do you need.

Q4 : Can you make customized products and customized packing?
A: Yes.We made a lot of customized products for our customer before.And we have many moulds for our customers already.About customized packing,we can put your Logo or other info on the packing.There is no problem.

Q5: Can you provide samples ? Are the samples free ?
A: Yes,we can provide samples.Normally,we provide 1-2pcs free samples for test or quality checking.But you have to pay for the
shipping cos.If you need many items, or need more qty for each item,we will charge for the samples.
 

Any requirements or question,Welcome to “Send” us an e-mail Now!
 

Recommend product

 

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Magnetically, Corrosion Resistant, High Speed, High Precision
Function: Super
Flange Shape: Oval
Shape: Flange
Series: LM
Material: Bearing Steel
Samples:
US$ 16.8/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Linear Slides

Linear bearings play a crucial role in ensuring the smooth movement of industrial conveyors and linear slides by providing low-friction support and guiding mechanisms. Here’s how linear bearings contribute to their operation:

  • Smooth Motion: Linear bearings offer precise and smooth linear motion to conveyors and linear slides, allowing materials or objects to move seamlessly along a defined path.
  • Low Friction: The design of linear bearings minimizes friction between the moving parts, reducing energy consumption and wear. This is particularly important for conveyors and slides that require frequent and continuous movement.
  • Guidance: Linear bearings guide the movement of the conveyor belts or linear slides, ensuring that they stay on track and follow the desired path without deviation.
  • Load Support: Linear bearings provide support for both radial and axial loads, allowing conveyors to carry heavy loads and linear slides to accommodate objects or components without sacrificing smoothness.
  • Precision: Linear bearings offer high precision and accuracy, which is essential for applications where precise positioning is required, such as in automated manufacturing processes.
  • Reduced Noise and Vibration: Linear bearings contribute to quieter operation by reducing noise and absorbing vibrations generated during movement. This is beneficial in environments where noise reduction is important.
  • Longevity: By minimizing friction and wear, linear bearings enhance the longevity of conveyors and linear slides, reducing the need for frequent maintenance and replacement.

In industrial settings, linear bearings ensure that conveyors efficiently transport materials, products, or components, while linear slides provide controlled and accurate movement for various applications. Whether in manufacturing, logistics, or automation, the use of linear bearings results in enhanced efficiency, reduced downtime, and improved overall performance.

linear bearing

Design Principles and Functionalities of Linear Bearings

Linear bearings are designed with specific principles to facilitate controlled linear motion along a single axis. These design principles contribute to their functionalities, making them essential components in various applications:

  • Rolling Elements:

Linear bearings typically feature rolling elements, such as balls or rollers, that move along a track or rail. These rolling elements reduce friction and enable smooth linear motion.

  • Guiding Mechanism:

Linear bearings incorporate a guiding mechanism to constrain the motion to a single axis. This guiding mechanism ensures that the linear bearing moves precisely along the desired path.

  • Load Distribution:

The design of linear bearings allows for effective distribution of loads, both in the radial and axial directions. This load distribution ensures stability and prevents excessive stress on individual components.

  • Rail or Track:

Linear bearings typically run along a rail or track that provides a smooth and accurate path for the rolling elements. The rail is designed to resist wear and maintain its precision over time.

  • Cage or Carriage:

Linear bearings use a cage or carriage to house the rolling elements and maintain their proper spacing. This arrangement ensures even load distribution and smooth movement.

  • Sealing and Lubrication:

Linear bearings often incorporate sealing mechanisms to protect the rolling elements from contaminants and to retain lubrication. Proper lubrication ensures smooth motion and extends the bearing’s lifespan.

  • Mounting Options:

Linear bearings are designed to be mounted in various ways, depending on the application’s requirements. Mounting options include flange-mounted, base-mounted, or end-supported configurations.

  • Adjustability:

Many linear bearings are designed with provisions for adjustment, allowing users to fine-tune the preload or clearance to optimize performance and minimize play.

  • Materials:

Linear bearings are constructed from materials that offer high wear resistance, durability, and corrosion resistance. Common materials include steel, stainless steel, and various engineering plastics.

  • Accessories:

Accessories such as end caps, seals, and lubrication systems can enhance the functionality and lifespan of linear bearings by providing protection and ensuring proper maintenance.

Functionalities of linear bearings include providing precise linear motion, guiding components along a defined path, minimizing friction, distributing loads, and maintaining stability. The design principles ensure reliable operation and make linear bearings indispensable in applications requiring controlled and accurate linear motion.

China Best Sales CNC Spider Jaw Coupling Lmh6uu Square Flange Linear Motion Bushing Bearing CNC   deep groove ball bearingChina Best Sales CNC Spider Jaw Coupling Lmh6uu Square Flange Linear Motion Bushing Bearing CNC   deep groove ball bearing
editor by CX 2024-05-14

China high quality Original Brand PMI Msa45e Linear Guideway and Block Bearing Msa25essfcnx for CNC Machine deep groove ball bearing

Product Description

Original Brand PMI Msa45e Linear Xihu (West Lake) Dis.way and Block Bearing MSA25ESSFCNX for CNC machine3d printer

PMI linear bearing features
1. High positioning accuracy, high repeatability
2. Low frictional resistance, high precision maintained for long period
3. High rigidity with four-way load design
4. Suitable for high speed operation
5. Easy installation with interchangeability

Specifications
PMI linear bearing:
1.Origin:PMI ZheJiang
2.Linear CZPT series:MSA,MSB
3.High precision
4.High rigidity

 

Packaging & Delivery
Packaging Detail:1.individual poly bag +box packing 2.poly bag + individual box +carton+ woven bag 3.poly bag + box +wooden case 4.plastic package +wooden case 5.as your requirement
Delivery Detail:PMI linear bearing will be send within 3 days after payment

  External dimension Carriage dimension Rail dimension Weight
  Height Width Length         Width Height Pitch Carriage Rail
ModelNo. H W L W2 H2 B C W1 H1 P kg kg/m
MSA15S 28 34 56.3 9.5 4.2 26 26 15 15 60 0.18 1.5
MSA20S 30 44 72.9 12 5 32 36 20 18 60 0.3 2.4
MSA20LS 88.8 50 0.39
MSA25S 40 48 81.6 12.5 6.5 35 35 23 22 60 0.52 3.4
MSA25LS 100.6 50 0.58
MSA30S 45 60 97 16 8 40 40 28 26 80 0.86 4.8
MSA30LS 119.2 60 1.12
MSA35S 55 70 111.2 18 9.5 50 50 34 29 80 1.45 6.6
MSA35LS 136.6 72 1.9
MSA45S 70 86 137.7 20.5 10 60 60 45 38 105 2.83 11.5
MSA45LS 169.5 80 3.7
MSA55S 80 100 161.5 23.5 13 75 75 53 44 120 4.12 15.5
MSA55LS 199.5 95 4.91
MSA65S 90 126 199 31.5 15 76 70 63 53 150 6.43 21.9
MSA65LS 253 120 8.76

 

 

 

 

 

 

 

 

 

 

 

PMI slide rail series

1.MSA series : MSA-A/MSA-LA,MSA-E/MSA-LE,MSA-S/MSA-LS

MSA 15A MSA 20A MSA 20LA MSA 25A MSA 25LA MSA 30A MSA 30LA MSA 35A MSA 35LA MSA 45A
MSA 45LA MSA 15E MSA 20E MSA 20LE MSA 25E MSA 25LE MSA 30E MSA 30LE MSA 35E MSA 35LE
MSA 45E MSA 45LE MSA 55E MSA 55LE MSA 65E MSA 65LE MSA 15S MSA 20S MSA 20LS MSA 25S
MSA 25LS MSA 30S MSA 30LS MSA 35S MSA 35LS MSA 45S MSA 45LS MSA 55S MSA 55LS MSA 65S

2.MSB series: MSB-TE/MSB-E,MSB-TS/MSB-S

MSB 15TE MSB 15E MSB 20TE MSB 20E MSB 25TE MSB 25E MSB 30TE MSB 30E MSB 15TS MSB 15S
MSB 20TS MSB 20S MSB 25TS MSB 25S MSB 30TS MSB 30S MSB 35S MSB 35LS    

3.MSR series: MSR-E/MSR-LE,MSR-S/MSR-LS

MSR 25E MSR 25LE MSR 30E MSR 30LE MSR 35E MSR 35LE MSR 45E MSR 45LE MSR 55E MSR 55LE MSR 65LE
MSR 25S MSR 25LS MSR 30S MSR 30LS MSR 35S MSR 35LS MSR 45S MSR 45LS MSR 55S MSR 55LS MSR 65LS

4.MSC series: MSC-M/MSC-LM

MSC 7M MSC 7LM MSC 9M MSC 9LM MSC 12M MSC 12LM MSC 15M MSC 15LM

5.SME series: SME-EA/SME-LEA,SME-EB/SME-LEB,SME-SA/SME-LSA,SME-SB/LSB SME-SV/LSV

SME 15EA SME 15LEA SME 20EA SME 20LEA SME 25EA SME 25LEA SME 30EA SME 30LEA SME 35EA SME 35LEA
SME 45EA SME 45LEA SME 15EB SME 15LEB SME 20EB SME 20LEB SME 25EB SME 25LEB SME 15SA SME 15LSA
SME 20SA SME 20LSA SME 25SA SME 25LSA SME 30SA SME 30LSA SME 35SA SME 35LSA SME 45SA SME 45LSA
SME 15SB SME 15LSB SME 20SB SME 20LSB SME 25SB SME 25LSB SME 25SV SME 25LSV SME 30SB SME 30LSB
SME 35SB SME 35LSB SME 45SB SME 45LSB SME 15SB SME 15LSB SME 20SB SME 20LSB SME 25SB SME 25LSB
SME 25SV SME 25LSV SME 30SB SME 30LSB SME 35SB SME 35LSB SME 45SB SME 45LSB    

6.SMR series: SMR-E/SME-LE,SMR-S/SME-LS

SMR 25E SMR 25LE SMR 30E SMR 30LE SMR 35E SMR 35LE SMR 45E SMR 45LE SMR 55E SMR 55LE SMR 65LS
SMR 65LE SMR 25S SMR 25LS SMR 30S SMR 30LS SMR 35S SMR 35LS SMR 45S SMR 45LS SMR 55S SMR 55LS

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Express: TNT, DHL, FedEx, EMS
Accurancy Grade: N; H; P; Sp; up
Sample: Avaliable
Brand Name: PMI
Transport Package: as Per Client′s Requirement
Trademark: PMI
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Considerations for Selecting the Right Type and Size of Linear Bearing

Choosing the appropriate type and size of linear bearing requires careful consideration of various factors to ensure optimal performance and compatibility with the application. Here are important considerations to keep in mind:

  • 1. Load Capacity:

Determine the maximum load the linear bearing will need to support. Consider both static and dynamic loads to select a bearing that can handle the expected weight and forces.

  • 2. Speed and Acceleration:

Assess the required speed and acceleration of the linear motion. Different linear bearing types have different speed limitations, so choose one that can accommodate the desired motion profile.

  • 3. Precision and Accuracy:

If your application requires precise positioning, choose linear bearings that offer high accuracy and repeatability. Linear ball bearings are known for their precision, while linear roller bearings offer higher load capacity.

  • 4. Environment:

Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Select linear bearings that are designed to withstand the specific environmental conditions.

  • 5. Rail or Shaft Compatibility:

Ensure that the chosen linear bearing is compatible with the rail or shaft you intend to use. Proper fit and alignment are crucial for smooth motion and long bearing life.

  • 6. Space Constraints:

If your application has limited space, choose compact linear bearings that can fit within the available area without compromising performance.

  • 7. Maintenance Requirements:

Consider the level of maintenance your application can accommodate. Some linear bearings are self-lubricating, reducing the need for frequent maintenance.

  • 8. Noise Level:

For noise-sensitive environments, opt for linear bearings that provide quiet operation to avoid disruptions caused by excessive noise.

  • 9. Mounting Options:

Consider how the linear bearing will be mounted and integrated into your system. Different bearings may require specific mounting configurations.

  • 10. Cost and Budget:

Balance the desired features and performance with your budget constraints. While high-performance linear bearings may offer advanced features, they can also come at a higher cost.

By carefully evaluating these factors, you can choose the most suitable type and size of linear bearing for your specific application. Consulting with bearing manufacturers and engineers can also provide valuable insights to ensure the optimal selection.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Linear Slides

Linear bearings play a crucial role in ensuring the smooth movement of industrial conveyors and linear slides by providing low-friction support and guiding mechanisms. Here’s how linear bearings contribute to their operation:

  • Smooth Motion: Linear bearings offer precise and smooth linear motion to conveyors and linear slides, allowing materials or objects to move seamlessly along a defined path.
  • Low Friction: The design of linear bearings minimizes friction between the moving parts, reducing energy consumption and wear. This is particularly important for conveyors and slides that require frequent and continuous movement.
  • Guidance: Linear bearings guide the movement of the conveyor belts or linear slides, ensuring that they stay on track and follow the desired path without deviation.
  • Load Support: Linear bearings provide support for both radial and axial loads, allowing conveyors to carry heavy loads and linear slides to accommodate objects or components without sacrificing smoothness.
  • Precision: Linear bearings offer high precision and accuracy, which is essential for applications where precise positioning is required, such as in automated manufacturing processes.
  • Reduced Noise and Vibration: Linear bearings contribute to quieter operation by reducing noise and absorbing vibrations generated during movement. This is beneficial in environments where noise reduction is important.
  • Longevity: By minimizing friction and wear, linear bearings enhance the longevity of conveyors and linear slides, reducing the need for frequent maintenance and replacement.

In industrial settings, linear bearings ensure that conveyors efficiently transport materials, products, or components, while linear slides provide controlled and accurate movement for various applications. Whether in manufacturing, logistics, or automation, the use of linear bearings results in enhanced efficiency, reduced downtime, and improved overall performance.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China high quality Original Brand PMI Msa45e Linear Guideway and Block Bearing Msa25essfcnx for CNC Machine   deep groove ball bearingChina high quality Original Brand PMI Msa45e Linear Guideway and Block Bearing Msa25essfcnx for CNC Machine   deep groove ball bearing
editor by CX 2024-04-25

China Custom Deep Groove Ball Tapered Roller Angular Contact Linear Bearing Bearing All Kinds of Bearing with So Many Brand wheel bearing

Product Description

Product Parameters

 

Product Name

   Angular Contact Ball Bearing 7009

Material

Chrome Steel

Place of Origin

China

Feature

Low noise,low libration,long life

Number of Row

Single Row

Inside diameter

  45mm

Outside Diameter

  75mm

Packing

According to the buyer requests for packaging 

Product Description

 


 

Detailed Photos

 

Application of Bearing

 

Strict Testing Produre

 

Company Profile

 

 

Packaging & Shipping

 

FAQ

Q: Are you trading company or manufacturer ?

 A: We are factory.We have our own brand:HQA .If you interested in our product,I can take you to visit our factory.

 Q: How long is your delivery time?
 A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is  according to quantity.

Q: Where is your factory located? How can I visit there?
 A: Our factory is located in ZheJiang Province,You can take the high-speed rail or plane to visit.

Q: Do you provide samples ? it is free charge?
 A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q:The MOQ is how much?
 A: About ordinary standard type of bearing ,We have rich inventory,not have MOQ,if your need a 
     product is Non-standard size,need customize,we will according the product size to determine the MOQ.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Aligning: Non-Aligning Bearing
Separated: Separated
Feature: Low Temperature, Corrosion Resistant, High Temperature, Low Viberation
Rows Number: Single
Raceway: Spherical Raceway
Material: Bearing Steel
Samples:
US$ 0.01/Set
1 Set(Min.Order)

|
Request Sample

linear bearing

Challenges and Solutions for Addressing Friction and Wear in Linear Bearings

Friction and wear are common challenges in linear bearings that can impact their performance and lifespan. Here are the challenges and some solutions to address them:

  • 1. Challenge: Friction:

Friction between the bearing components can lead to increased energy consumption, heat generation, and reduced efficiency.

  • Solution: Lubrication:

Proper lubrication is essential to minimize friction. Lubricants reduce the contact between moving parts, allowing smoother motion and reducing wear. Choosing the right lubricant and applying it correctly can significantly mitigate friction-related issues.

  • 2. Challenge: Wear:

Continuous movement can lead to wear on the bearing surfaces, affecting precision and performance over time.

  • Solution: Regular Maintenance:

Implementing a regular maintenance schedule can help monitor wear and replace worn components before they compromise performance. This includes cleaning, re-lubrication, and periodic inspection of the bearing’s condition.

  • 3. Challenge: Contaminants:

Dust, debris, and foreign particles can enter the bearing system, leading to increased friction and accelerated wear.

  • Solution: Sealing and Protection:

Using seals, covers, or protective enclosures can help prevent contaminants from entering the bearing system. These protective measures maintain the integrity of the lubricant and extend the bearing’s lifespan.

  • 4. Challenge: Improper Installation:

If linear bearings are not installed correctly, misalignment and uneven load distribution can contribute to friction and wear.

  • Solution: Precise Installation:

Follow manufacturer guidelines for proper installation, ensuring accurate alignment and even load distribution. This reduces the risk of premature wear and ensures optimal performance.

  • 5. Challenge: Inadequate Lubrication:

If the linear bearings are under-lubricated or over-lubricated, it can lead to increased friction and wear.

  • Solution: Lubrication Management:

Monitor and manage lubrication levels to ensure they are within the recommended range. Regularly assess the lubricant’s condition and replenish as needed to maintain optimal performance.

  • 6. Challenge: High Loads and Speeds:

High loads and speeds can increase friction and wear on linear bearings.

  • Solution: Proper Selection:

Select linear bearings that are designed to handle the specific loads and speeds of the application. This ensures that the bearings can operate effectively under the given conditions.

Addressing friction and wear challenges in linear bearings requires a combination of proper maintenance practices, appropriate lubrication, protective measures, and careful selection of bearings. By implementing these solutions, the performance and longevity of linear bearings can be optimized.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Linear Slides

Linear bearings play a crucial role in ensuring the smooth movement of industrial conveyors and linear slides by providing low-friction support and guiding mechanisms. Here’s how linear bearings contribute to their operation:

  • Smooth Motion: Linear bearings offer precise and smooth linear motion to conveyors and linear slides, allowing materials or objects to move seamlessly along a defined path.
  • Low Friction: The design of linear bearings minimizes friction between the moving parts, reducing energy consumption and wear. This is particularly important for conveyors and slides that require frequent and continuous movement.
  • Guidance: Linear bearings guide the movement of the conveyor belts or linear slides, ensuring that they stay on track and follow the desired path without deviation.
  • Load Support: Linear bearings provide support for both radial and axial loads, allowing conveyors to carry heavy loads and linear slides to accommodate objects or components without sacrificing smoothness.
  • Precision: Linear bearings offer high precision and accuracy, which is essential for applications where precise positioning is required, such as in automated manufacturing processes.
  • Reduced Noise and Vibration: Linear bearings contribute to quieter operation by reducing noise and absorbing vibrations generated during movement. This is beneficial in environments where noise reduction is important.
  • Longevity: By minimizing friction and wear, linear bearings enhance the longevity of conveyors and linear slides, reducing the need for frequent maintenance and replacement.

In industrial settings, linear bearings ensure that conveyors efficiently transport materials, products, or components, while linear slides provide controlled and accurate movement for various applications. Whether in manufacturing, logistics, or automation, the use of linear bearings results in enhanced efficiency, reduced downtime, and improved overall performance.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China Custom Deep Groove Ball Tapered Roller Angular Contact Linear Bearing Bearing All Kinds of Bearing with So Many Brand   wheel bearingChina Custom Deep Groove Ball Tapered Roller Angular Contact Linear Bearing Bearing All Kinds of Bearing with So Many Brand   wheel bearing
editor by CX 2024-04-17

China wholesaler Wj506 Distributor Original CZPT CZPT CZPT CZPT CZPT CZPT Ball Bearing 6000 6002 6004 6006 6008 6200 Tapper Roller Bearing Linear Bearing Deep Groove Ball Bearing with Great quality

Product Description

Product Description

WHY CHOOSE E-ASIA BEARING?

1) 20 years of rich bearing industry export experience
2) ISO & MPA & CE & SGS & BV certified
3) Professional engineers team and Superior machines
4) 1 hour to HangZhou port or ZheJiang port
5) Strict quality inspection (3 steps) before shipment, such as SGS/BV third party certified.

CHOOSE E-ASIA       REFUSED ONE TIME BUSINESS

Deep groove ball bearing 5 88506 88507 88508A 88508 88509 622 62303 62304 62305 62306 62307 62308 62309 62310
Taper roller bearings 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35714 35716 35718 35710 35712 35714 35716 35710 35714 30302 30303 30304 30305 30306 30307 30308 3 3 0571 3 0571 3 0 30321 30322 30324 30326 30328 30330 30332 30334 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32224 32226 32228 32230 32232 32236 32238 32240 32244 32248 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32324 32326 32330 32334 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31324 31326 31328 31332 32 325714 320726 325718 53856k 53860
Self-aligning ball bearings
spherical plain bearing GE4E GE5E GE6E GE8E GE10E GE12E GE15ES GE17ES GE20ES GE25ES GE30ES GE35ES GE40ES GE45ES GE50ES GE60ES GE70ES GE80ES GE90ES GE1 110145 120155 130170 140180 150190 165710
Thrust ball bearing 511 234415 234416 234417 234418 234419 234420 234421 234422 234424 234426 234428 234430 234432 234438 234440 234714 234715 234716 234717 234718 234719 234720 234721 234722 234722 347262 347282 347302 347322 347382 34740
Cylindrical Roller Bearings NU313EMA NU2313EMA NU2314EMA NU415EMA NU216EMA NU2216EMA NJ2216EMA NUP2216EMA NU316EMA NU2316EMA NU217EMA NU2217EMA NU317EMA NU2317EMA NJ2317EMA NU218EMA NJ218EMA NU2218EMA NJ2218EMA NUP2218EMA NU318EMA NJ318EMA NU2318EMA NJ2318EMA NU219EMA NJ219EMA NU2219EMA NJ2219EMA NU319EMA NJ319EMA NU2319EMA NJ2319EMA NU220EMA NJ220EMA NU2220EMA NJ2220EMA NU320EMA NJ320EMA NU2320EMA NJ2320EMA NU222EMA NJ222EMA NU2222EMA NJ2222EMA NU322EMA NJ322EMA NU2322EMA NJ2322EMA NU1571MA NU224EMA NJ224EMA NU2224EMA NJ2224EMA NU324EMA NJ324EMA NU2324EMA NJ2324EMA NU1026MA NU226EMA NJ226EMA NU2226EMA NJ2226EMA NU326EMA NJ326EMA NU2326EMA NJ2326EMA NU1571MA NU228EMA NJ228EMA NU2228EMA NJ2228EMA NU328EMA NJ328EMA NU2328EMA NJ2328EMA NU1030MA NU230EMA NJ230EMA NUP230EMA NU2230EMA NJ2230EMA N2230EMB NU330EMA NJ330EMA NU2330EMA NJ2330EMA NU1032MA NU232EMA NJ232EMA NUP232EMA NU2232EMA NJ2232EMA NU332EMA NJ332EMA NU2332EMA NJ2332EMA NU1034MA NU3034EMA NU234EMA NJ234EMA NU2234EMA NJ2234EMA NU334EMA NJ334EMA NU2334EMA NJ2334EMA NU1036MA NU236EMA NJ236EMA NU2236EMA NJ2236EMA NU336EMA NJ336EMA NU2336EM NJ2336EMA NU1038MA NU238EMA NJ238EMA NU2238EMA NJ2238EMA NU338EMA NJ338EMA NU2338EMA NJ2338EMA NU1040MA NU240EMA NJ240EMA NU2240EMA NJ2240EMA NU340EMA NJ340EMA NU2340EMA NJ2340EMA NU1044MA NJ1044MA NU3044EMA NU244EMA NJ244EMA NU2244EMA NJ2244EMA NU344EMA NJ344EMA NU2344EMA NJ2344EMA N2344EMB NU1048MA NU248EMA NJ248EMA NU348EMA NJ348EMA NU2348EMA NJ2348EMA NU1052MA NU3052MA NU252MA NUP252MA NU2252MA NU2352EMA NU1056MA NU1060MA NU1964MA NF2964EMB NU1064MA NU2264MA NF2968EMB NU1068MA NU3068EMA NU3168EMA NU2372EMA NU1072MA NU1076MA NJ2980EMA NU1080MA NU2080EMA NF2984EMB NU1088MA NU2088EMA NU3188EMA NJ2892EMA NF2992EMB NU3192EMA NU1096EMA NJ1096EMA NU31/500EMA NU18/560MA NU30/600EMA NU20/630EMA NU20/670EMA NU20/670EMA NU30/670EMA NJ28/710EMA NJ29/710MA NU20/750EMA NU20/800EMA NU20/850EMA NU39/900EMA NU20/900EMA NJ18/1120EMA105RU32 105RN32 105RJ32 105RF32 105RT32 170RU51 170RN51 170RJ51 170RF51 170RT51 170RU91 170RN91 170RJ91 170RF91 170RT91 170RU93 170RN93 170RJ93 170RF93 170RT93 180RU51 180RN51 180RJ51 180RF51 180RT51 180RU91 180RN91 180RJ91 180RF91 180RT91 190RU91 190RN91 190RJ91 190RF91 190RT91 190RU92 190RN92 190RJ92 190RF92 190RT92 200RU91 200RN91 200RJ91 200RF91 200RT91 200RU92 200RN92 200RJ92 200RF92 200RT92 210RU92 210RN92 210RJ92 210RF92 210RT92 220RU51 220RN51 220RJ51 220RF51 220RT51 220RU91 220RN91 220RJ91 220RF91 220RT91 220RU92 220RN92 220RJ92 220RF92 220RT92 240RU91 240RN91 240RJ91 240RF91 240RT91 250RU91 250RN91 250RJ91 250RF91 250RT91NCF2922V NCF2924V NCF2926V NCF2928V NCF2930V NCF2932V NCF2934V NCF2936V NCF2938V NCF1840V NCF2940V NCF1844V NCF2944V NCF1852V NCF2952V NCF2960V NCF1864V NCF2964V NCF1868V NCF1876V NCF2976V NCF1880V NCF1884V NCF1888V NCF1892V NCF2992V NCF2996V NCF18/500V NCF29/500V NCF18/530V NCF18/560V NCF18/600V NCF18/630V NCF18/670V NCF18/710V NCF18/750V NCF18/800VNNU4930MAW33 NNU4932MAW33 NNU4934MAW33 NNU4936MAW33 NNU4938MAW33 NNU4940MAW33 NNU4140MAW33 NNU4944MAW33 NNU4144MAW33 NNU4948MAW33 NNU4148MAW33 NNU4952MAW33 NNU4152MAW33 NNU4956MAW33 NNU4156MAW33 NNU4960MAW33 NNU4160MAW33 NNU4964MAW33 NNU4164MAW33 NNU4968MAW33 NNU4068MAW33 NNU4168MAW33 NNU4972MAW33 NNU4072MAW33 NNU4172MAW33 NNU4976MAW33 NNU4076MAW33 NNU4176MAW33 NNU4980MAW33 NNU4080MAW33 NNU4180MAW33 NNU4984MAW33 NNU4084MAW33 NNU4184MAW33 NNU4988MAW33 NNU4088MAW33 NNU4188MAW33 NNU4992MAW33 NNU4092MAW33 NNU4192MAW33 NNU4996MAW33 NNU4096MAW33 NNU4196MAW33 NNU49/500MAW33 NNU40/500MAW33 NNU49/530MAW33 NNU40/530MAW33 NNU49/560MAW33 NNU49/600MAW33 NNU49/630MAW33 NNU49/670MAW33 NNU40/670MAW33 NNU49/710MAW33 NNU49/750MAW33 NNU49/800MAW33 NNU49/850MAW33 NNU49/900MAW33
 

Company Profile

        E-Asia was set up in 1996 and located at HangZhou, a beautiful city in China. Our company is bearing manufacturer and NSK CZPT CZPT CZPT CZPT HRB LYC NACHI C&U bearing distributor. We also provide OEM beaings.Since it was first established, E-AISA was dedicated in research, development and manufacture of bearings. Now, E-AISA has become main and 1 of the first grade suppliers of all kinds of bearings.
          Our products include: Deep Groove Ball Bearings, Self-aligning Ball Bearings, Spherical Bearings, Tapered Roller Bearings,Cylindrical Roller Bearings, Needle Roller Bearings, Self-aligning Roller Bearings, Angular Contact Ball Bearings, Thrust Ball Bearings and Trust Roller Bearings and Special Bearings.
        E-Asia is a backbone enterprise for bearing production in China. With an area of 60, 000 square meters, more than 260 sets devices and machines, and around 200 employees, our company annually turns out more than 6 million sets bearings.

        Our Bearings are exported to the USA, Canada, UK, Germany, Poland, Italy, Russia, the Middle East, Africa and other countries and regions of the world. E-Asia Bearing Co. Ltd. Is committed to the introduction of high-quality bearing products. Our company have more than 200 employees.
        Our brands include ZWZ bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings and so forth.

 
Our belief is “Specialization is quality; Quality is the future. Any product with 0.01% defect is 100% reject” is our quality policy.

Packaging & Shipping

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
Most orders will be shipped within 3-5 days of payment being received.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
Do our best to meet customer needs, negotiable.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, account or account, we will contact you as soon as possible and provide the detailed information you need.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Auto Clutch Bearing
Material: Chrome Steel
Tolerance: P5
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Contribution of Linear Bearings to CNC Machining Efficiency and Accuracy

Linear bearings play a crucial role in enhancing the efficiency and accuracy of Computer Numerical Control (CNC) machining processes. Here’s how they contribute:

  • 1. Enhanced Precision:

Linear bearings provide smooth and precise linear motion along machine axes. This precision is essential for achieving tight tolerances and accurate dimensions in machined parts.

  • 2. Reduced Friction and Wear:

Low friction in linear bearings minimizes energy loss and heat generation during movement. This reduces wear on the components and extends the lifespan of the machine, resulting in consistent performance over time.

  • 3. Smooth Motion Control:

Linear bearings enable controlled and predictable motion, allowing CNC machines to execute complex tool paths with smooth transitions. This is crucial for producing intricate shapes and achieving high-quality surface finishes.

  • 4. Minimized Vibration and Noise:

The smooth operation of linear bearings reduces vibration and noise levels during machining. This is especially important for maintaining a stable machining environment and producing parts with minimal surface imperfections.

  • 5. Rapid Traverse Speeds:

Linear bearings facilitate rapid movements of machine components between machining operations. This increases the efficiency of the machining process, reducing cycle times and increasing overall productivity.

  • 6. High Acceleration and Deceleration:

Linear bearings allow CNC machines to accelerate and decelerate rapidly without sacrificing precision. This capability is advantageous for optimizing machining time while maintaining accuracy.

  • 7. Improved Repeatability:

Linear bearings ensure consistent and repeatable motion, resulting in parts that match design specifications precisely across multiple production runs.

  • 8. Flexibility in Design:

Linear bearings enable the design of compact and space-efficient CNC machines. Their small footprint allows for more efficient use of manufacturing floor space.

In summary, linear bearings significantly enhance CNC machining by providing accurate, smooth, and controlled motion. This translates into higher precision, reduced wear, improved surface finishes, and increased productivity. Whether it’s milling, turning, or other CNC processes, linear bearings are essential for achieving the level of accuracy and efficiency demanded by modern manufacturing.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Common Applications and Industries for Linear Bearings

Linear bearings find widespread use in a variety of applications and industries due to their ability to provide controlled linear motion. Some common applications and industries where linear bearings are essential components include:

  • Industrial Automation:

Linear bearings are used in automated machinery and equipment to enable precise and repeatable movement of components. They play a critical role in assembly lines, material handling systems, and robotics.

  • CNC Machinery:

In computer numerical control (CNC) machines, linear bearings facilitate accurate movement of the cutting tool or workpiece. They contribute to the precision and quality of machining operations.

  • Medical Devices:

Linear bearings are crucial in medical equipment such as MRI machines, CT scanners, and robotic surgical systems. Their precision and smooth motion are vital for accurate medical procedures.

  • Packaging Machinery:

In packaging and labeling machines, linear bearings ensure precise movement of containers, products, and labeling mechanisms. This results in consistent and reliable packaging processes.

  • Printing Industry:

Linear bearings are used in printing presses to ensure precise movement of print heads, paper feed mechanisms, and other critical components. This helps achieve accurate printing results.

  • Textile Machinery:

In textile manufacturing, linear bearings contribute to the smooth operation of spinning machines, looms, and fabric handling systems. They help maintain proper tension and alignment of materials.

  • Aerospace and Defense:

Linear bearings are utilized in aerospace applications such as aircraft actuators, landing gear systems, and satellite mechanisms. They withstand harsh conditions and provide reliable motion control.

  • Material Handling:

In conveyor systems and material handling equipment, linear bearings facilitate the movement of goods along production lines, warehouses, and distribution centers.

  • Automotive Industry:

Linear bearings are used in automotive manufacturing for tasks like seat adjustments, sunroof operation, and door mechanisms. Their precision enhances passenger comfort.

  • Scientific Research:

In laboratory equipment and scientific instruments, linear bearings contribute to accurate positioning of samples, sensors, and analytical components.

These are just a few examples of the diverse applications and industries where linear bearings are essential. Their ability to provide controlled and reliable linear motion makes them indispensable in achieving precision, efficiency, and performance across various sectors.

China wholesaler Wj506 Distributor Original CZPT CZPT CZPT CZPT CZPT CZPT Ball Bearing 6000 6002 6004 6006 6008 6200 Tapper Roller Bearing Linear Bearing Deep Groove Ball Bearing   with Great qualityChina wholesaler Wj506 Distributor Original CZPT CZPT CZPT CZPT CZPT CZPT Ball Bearing 6000 6002 6004 6006 6008 6200 Tapper Roller Bearing Linear Bearing Deep Groove Ball Bearing   with Great quality
editor by CX 2024-04-17

China best 30308/30309/30310/30311/30312 Tapered Roller/thrust/china wholesale/Engine/motorcycle/tractor/linear guide/steel ball/Diesel generator sets/gear/1688 bearing deep groove ball bearing

Product Description

Product Parameters

Tapered Roller Bearing
Single Row Tapered Roller Bearing
Bearing No. dxDxTxBxC (mm) Weight(kg)   Bearing No. dxDxTxBxC (mm) Weight(kg)
35712 15 35 12 7 5 0.050    30302 15 42 14.25 13 11 0.098 
35713 17 40 13.25 12 11 0.080    30303 17 47 15.25 14 12 0.134 
35714 20 47 15.25 14 12 0.127    30304 20 52 16.25 16 13 0.176 
35715 25 52 16.25 15 13 0.154    30305 25 62 18.25 17 15 0.272 
35716 30 62 17.25 16 14 0.241    30306 30 72 20.75 19 16 0.408 
35717 35 72 18.25 17 15 0.344    30307 35 80 22.75 21 18 0.540 
35718 40 80 19.75 18 16 0.435    30308 40 90 25.25 23 20 0.769 
35719 45 85 20.75 19 16 0.495    30309 45 100 27.25 25 22 1.571 
35710 50 90 21.75 20 17 0.563    3571 50 110 29.25 27 23 1.310 
35712 60 110 23.75 22 19 0.949    3571 55 120 31.5 29 25 1.660 
35713 65 120 24.75 23 20 1.180    3571 65 140 36 33 28 2.550 
35714 70 125 26.25 24 21 1.260    3571 70 150 38 35 30 3.060 
35715 75 130 27.25 25 22 1.410    3571 75 160 40 37 31 3.570 
35716 80 140 28.25 26 22 1.720    3 0571 80 170 42.5 39 33 4.410 
35717 85 150 30.5 28 24 2.140    3 0571 85 180 44.5 41 34 5.200 
35718 90 160 32.5 30 26 2.660    3 0571 90 190 46.5 43 36 6.030 
35719 95 170 34.5 32 27 3.070    3571 95 200 49.5 45 38 6.980 
35710 100 180 37 34 29 3.780    30320 100 215 51.5 47 39 8.560 
                             
                             
31305 25 62 18.25 17 13 0.284                 
31306 30 72 20.75 19 14 0.398                 
31307 35 80 22.75 21 15 0.530                 
31308 40 90 25.25 23 17 0.738                 
31311 55 120 31.5 29 21 1.590                 
31313 65 140 36 33 23 2.420                 
31314 70 150 38 35 25 2.920                 
31315 75 160 40 37 26 3.470                 
31316 80 170 42.5 39 27 4.110                 
31317 85 180 44.5 41 28 4.850                 
31318 90 190 46.5 43 30 5.660                 
31320 100 215 56.5 51 35 8.670                 
                             
                             

01 Roller Bearing

Cylindrical Roller Bearings Spherical Roller Bearings
Taper Roller Bearings Needle Roller Bearings

02 Applications
  

Main Applications
Automobile Others
Front Wheel Machine Tool Spindles
Rear Wheel Construction Machinery
Gearbox Large Agricultural Machinery
Differential Pinion Shaft Railroad Vehicle Gear Reducers
  Mill Spokes And Reducers
***Suitable for Heavy Loads and Shock Loads***

 

Packaging & Shipping

 

Company Profile

About Us
Focus on a variety of industries
Provide maintenance solutions
Optimize customer inventory and reduce cost
 

What We Do
Comprehensive product range:

– Bearings
– Oil seals, Transmission belt
– Chain and Sprocket
– Hub assembly & Wheel bearings
– Coupling, castings
– Linear motion

Our Advantages

1. We have the most advanced bearing process equipment, CNC automatic facilities, and testing instruments.
2. We manufacture ball bearings and mounted bearing units, and also provide a strong full range of products, including electric motors and components One-stop partnerships products from our audited supply chain.
3. All products are manufactured exclusively by companies with ISO 9001:2008 certified Quality Systems which use state-of-the-art machines. The quality path starts from the beginning to deliver and goods’ quality trackable

 

Advantage
Advanced Automatic Lines Comprehensive Range
Premium Quality Sustainability

Our Values
Behavior-based, service-oriented, focused on results and committed to continuous improvement

Factory
To be a leader in providing the best valuable (Reasonable cost, Reliable quality) supply of precision rollers.
Providing this value, will help our customers remain competitive in the global marketplace.

Please see detailed introduction about our manufacturing process and measuring process.

Advantage Manufacturing Processes and Quality Control:
01Heat Treatment
02 Centerless Grinding Machine 11200 (most advanced)
03 Automatic Production Lines for Raceway
04 Automatic Production Lines for Raceway
05 Ultrasonic Cleaning of Rings
06 Automatic Assembly
07 Ultrasonic Cleaning of Bearings
08 Automatic Greasing, Seals Pressing
09Measurement of Bearing Vibration (Acceleration)
10 Measurement of Bearing Vibration (Speed)
11 Laser Marking
12 Automatic Packing

 

Quality Warranty

Granville as a manufacturer of high quality products, guarantees compliance with the highest standards relative to the use of the best steel quality in the production process, the highest standards in the design of contact surfaces, as well as the most efficient packing and lubrication of parts. From material coming, quality control through all processes. Except interal test, goods to third party inspection if required. After the center of inspection and experiment being founded, effective methods of inspecting all kinds of raw materials are mastered and then the reliability of bearings is ensured. One of our main objectives is the continued improvement in the quality of our products and processes, in pursuit of which we obtained ISO certification 9001:2008 and TS16949. 

After Sales Service

  1. Optimize customer inventory and reduce cost
  2. Provide maintenance solutions

FAQ

 

Q1.Can you accept OEM and customization?
A: Yes. We can customize it according to the samples and drawings you provide.

Q2.Do you keep a stock of these things?
A: In stocks

Q3.Can you provide samples free of charge?
A: Yes. We can provide samples free of charge. But the freight is paid by the customer.

Q4.What’s the delivery date?
A:The delivery time of sample orders is 3 working days.The bulk orders are 5-10 working days.

Q5: Why your price is higher than others?
A: Price = quality . We firmly believe that by the quality of the customer is always get more reliable than on price . So we insist on doing high-quality products.

Q6:What kind of transport do you have ?
A: According to the weight,we will choose the most appropriate mode of transport for you. Our freight forwarding is efficient and cheap.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Sample unit price depends on the specific model
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Considerations for Selecting the Right Type and Size of Linear Bearing

Choosing the appropriate type and size of linear bearing requires careful consideration of various factors to ensure optimal performance and compatibility with the application. Here are important considerations to keep in mind:

  • 1. Load Capacity:

Determine the maximum load the linear bearing will need to support. Consider both static and dynamic loads to select a bearing that can handle the expected weight and forces.

  • 2. Speed and Acceleration:

Assess the required speed and acceleration of the linear motion. Different linear bearing types have different speed limitations, so choose one that can accommodate the desired motion profile.

  • 3. Precision and Accuracy:

If your application requires precise positioning, choose linear bearings that offer high accuracy and repeatability. Linear ball bearings are known for their precision, while linear roller bearings offer higher load capacity.

  • 4. Environment:

Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Select linear bearings that are designed to withstand the specific environmental conditions.

  • 5. Rail or Shaft Compatibility:

Ensure that the chosen linear bearing is compatible with the rail or shaft you intend to use. Proper fit and alignment are crucial for smooth motion and long bearing life.

  • 6. Space Constraints:

If your application has limited space, choose compact linear bearings that can fit within the available area without compromising performance.

  • 7. Maintenance Requirements:

Consider the level of maintenance your application can accommodate. Some linear bearings are self-lubricating, reducing the need for frequent maintenance.

  • 8. Noise Level:

For noise-sensitive environments, opt for linear bearings that provide quiet operation to avoid disruptions caused by excessive noise.

  • 9. Mounting Options:

Consider how the linear bearing will be mounted and integrated into your system. Different bearings may require specific mounting configurations.

  • 10. Cost and Budget:

Balance the desired features and performance with your budget constraints. While high-performance linear bearings may offer advanced features, they can also come at a higher cost.

By carefully evaluating these factors, you can choose the most suitable type and size of linear bearing for your specific application. Consulting with bearing manufacturers and engineers can also provide valuable insights to ensure the optimal selection.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China best 30308/30309/30310/30311/30312 Tapered Roller/thrust/china wholesale/Engine/motorcycle/tractor/linear guide/steel ball/Diesel generator sets/gear/1688 bearing   deep groove ball bearingChina best 30308/30309/30310/30311/30312 Tapered Roller/thrust/china wholesale/Engine/motorcycle/tractor/linear guide/steel ball/Diesel generator sets/gear/1688 bearing   deep groove ball bearing
editor by CX 2024-04-09

China wholesaler Industrial Automation High Precision Linear Bearing for Replacement CZPT Linear Transmission deep groove ball bearing

Product Description

Industrial Automation High Precision Linear Bearing for replacement Hiwin linear transmission: high-torque SG serias

Our Partners

FAQ

Q: Could you provide sample?
A: Yes,we could .
Q: What is your MOQ?
A: 1 pc is available.
Q: Do you have any replaceable types of Hiwin, THK, IKO,etc?
A: Yes, we will check our replaceable types as per Hiwin, THK,IKO and other brands types.
Q: What is your delivery time ?
A: About 5-7 days after receiving the payment.
Q:Is customization available?
A:Yes.Our customized service is available.

Our Commitments
  All products have passed rigorous factory test to ensure high quality.
  We own patented products and SGS,ISO certifications.
  High-efficiency assembly and production lines ensure on-time delivery.

Detailed Photos

Company Profile

Certifications

Exhitions

Application

Our Advantages

Pre sale service:
▽  Technical communication with engineer.
▽  Factory visit.
▽  Making customized drawings patiently.

After sale service:
▽  Overseas and spare part support.
▽  Technical and spare parts support.
▽  ODM, OEM service 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane
Material: Steel
Driven Type: Hydraulic
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

290000PCS/Month

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Challenges and Solutions for Addressing Friction and Wear in Linear Bearings

Friction and wear are common challenges in linear bearings that can impact their performance and lifespan. Here are the challenges and some solutions to address them:

  • 1. Challenge: Friction:

Friction between the bearing components can lead to increased energy consumption, heat generation, and reduced efficiency.

  • Solution: Lubrication:

Proper lubrication is essential to minimize friction. Lubricants reduce the contact between moving parts, allowing smoother motion and reducing wear. Choosing the right lubricant and applying it correctly can significantly mitigate friction-related issues.

  • 2. Challenge: Wear:

Continuous movement can lead to wear on the bearing surfaces, affecting precision and performance over time.

  • Solution: Regular Maintenance:

Implementing a regular maintenance schedule can help monitor wear and replace worn components before they compromise performance. This includes cleaning, re-lubrication, and periodic inspection of the bearing’s condition.

  • 3. Challenge: Contaminants:

Dust, debris, and foreign particles can enter the bearing system, leading to increased friction and accelerated wear.

  • Solution: Sealing and Protection:

Using seals, covers, or protective enclosures can help prevent contaminants from entering the bearing system. These protective measures maintain the integrity of the lubricant and extend the bearing’s lifespan.

  • 4. Challenge: Improper Installation:

If linear bearings are not installed correctly, misalignment and uneven load distribution can contribute to friction and wear.

  • Solution: Precise Installation:

Follow manufacturer guidelines for proper installation, ensuring accurate alignment and even load distribution. This reduces the risk of premature wear and ensures optimal performance.

  • 5. Challenge: Inadequate Lubrication:

If the linear bearings are under-lubricated or over-lubricated, it can lead to increased friction and wear.

  • Solution: Lubrication Management:

Monitor and manage lubrication levels to ensure they are within the recommended range. Regularly assess the lubricant’s condition and replenish as needed to maintain optimal performance.

  • 6. Challenge: High Loads and Speeds:

High loads and speeds can increase friction and wear on linear bearings.

  • Solution: Proper Selection:

Select linear bearings that are designed to handle the specific loads and speeds of the application. This ensures that the bearings can operate effectively under the given conditions.

Addressing friction and wear challenges in linear bearings requires a combination of proper maintenance practices, appropriate lubrication, protective measures, and careful selection of bearings. By implementing these solutions, the performance and longevity of linear bearings can be optimized.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China wholesaler Industrial Automation High Precision Linear Bearing for Replacement CZPT Linear Transmission   deep groove ball bearingChina wholesaler Industrial Automation High Precision Linear Bearing for Replacement CZPT Linear Transmission   deep groove ball bearing
editor by CX 2024-04-04

China supplier Slewing Bearing Tapered Roller Steel Ball Bearings Deep Groove Puller Front Wheel Hub Pillow Block Taper Roller Angular Contact Rear Wheel Linear Auto Bearing supplier

Product Description

         Slewing bearing Tapered Roller steel ball bearings Deep Groove puller front            wheel hub pillow block taper roller angular contact rear wheel linear  auto bearing 

Application of Slewing bearing

A slewing bearing, also called a turntable bearing, is a type of bearing that allows for a heavy but slow-turning or slowly-oscillating load to be supported in combination (axial, radial and moment loads), often a horizontal platform such as a conventional crane, a swing yarder, or the wind-facing platform of a horizontal-axis (yaw) windmill. In other orientations (e.g. a horizontal axis of rotation) they are used in materials handling grapples, forklift attachments, welding turnover jigs and so on.

Slewing rings range in size from as little as 100mm diameter to well over 15 000mm (often segmented at this size for easy transport and handling); for example the bearings on the Falkirk Wheel are 4 meters diameter and fit over a 3.5 meter axle. Slewing bearings are often made with gear teeth integral with the inner or outer race (or both in rare cases) used to drive the platform relative to the base (for example in winches).

Slewing rings are used in a variety of applications, including:

  • Wind turbines: Slewing bearings are used in wind turbines to support the nacelle and rotor blades.
  • Cranes: Slewing bearings are used in cranes to support the boom and jib.
  • Drilling rigs: Slewing bearings are used in drilling rigs to support the mast and drill string.
  • Robotics: Slewing bearings are used in robotics to support the manipulator arm.
  • Machine tools: Slewing bearings are used in machine tools to support the spindle and workpiece.

Slewing bearings are a critical component in many applications. They are responsible for supporting heavy loads and allowing for smooth and precise movement.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Aligning Bearings
Load Direction: Axial Bearing
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Contribution of Linear Bearings to Smooth Movement of Conveyors and Linear Slides

Linear bearings play a crucial role in ensuring the smooth movement of industrial conveyors and linear slides by providing low-friction support and guiding mechanisms. Here’s how linear bearings contribute to their operation:

  • Smooth Motion: Linear bearings offer precise and smooth linear motion to conveyors and linear slides, allowing materials or objects to move seamlessly along a defined path.
  • Low Friction: The design of linear bearings minimizes friction between the moving parts, reducing energy consumption and wear. This is particularly important for conveyors and slides that require frequent and continuous movement.
  • Guidance: Linear bearings guide the movement of the conveyor belts or linear slides, ensuring that they stay on track and follow the desired path without deviation.
  • Load Support: Linear bearings provide support for both radial and axial loads, allowing conveyors to carry heavy loads and linear slides to accommodate objects or components without sacrificing smoothness.
  • Precision: Linear bearings offer high precision and accuracy, which is essential for applications where precise positioning is required, such as in automated manufacturing processes.
  • Reduced Noise and Vibration: Linear bearings contribute to quieter operation by reducing noise and absorbing vibrations generated during movement. This is beneficial in environments where noise reduction is important.
  • Longevity: By minimizing friction and wear, linear bearings enhance the longevity of conveyors and linear slides, reducing the need for frequent maintenance and replacement.

In industrial settings, linear bearings ensure that conveyors efficiently transport materials, products, or components, while linear slides provide controlled and accurate movement for various applications. Whether in manufacturing, logistics, or automation, the use of linear bearings results in enhanced efficiency, reduced downtime, and improved overall performance.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China supplier Slewing Bearing Tapered Roller Steel Ball Bearings Deep Groove Puller Front Wheel Hub Pillow Block Taper Roller Angular Contact Rear Wheel Linear Auto Bearing   supplierChina supplier Slewing Bearing Tapered Roller Steel Ball Bearings Deep Groove Puller Front Wheel Hub Pillow Block Taper Roller Angular Contact Rear Wheel Linear Auto Bearing   supplier
editor by CX 2024-03-28

China Professional CZPT Super Precision Bearing 76 Series Ball Screw Support Bearings 760317tn1/P4 for Ball Screw Linear deep groove ball bearing

Product Description

ZYS super precision bearing 76 series ball screw support bearings 76 0571 TN1/P4 for Ball Screw Linear

Product Description

Ball screw bearings can withstand large axial loads in a single direction, and can also withstand a certain radial load at the same time. Ball screw support bearings usually need to be used in double or multiple combinations, and the matching method is the same as angular contact ball bearings. CZPT can offer ISO metric ball screw bearings and non-ISO metric ball screw bearings, which are widely used for precision instruments and ball bearing lead screws. 

Ball screw bearings can withstand large axial loads in a single direction, and can also withstand a certain radial load at the same time. Ball screw support bearings usually need to be used in double or multiple combinations, and the matching method is the same as angular contact ball bearings.

ZYS ball screw bearing is a one-way angular contact thrust ball bearing with contact angle of 60°. It has good performance of high precision, high speed, high axial stiffness, low friction, long life and high&low speed transition conversion. CZPT ball screw bearing is particularly suitable for ball bearing lead screw and similar transmission components in high speed precision CNC machine tools.

ZYS ball screw thrust bearings have 7602 and 7603 series, which are standard metric with internal diameters from 12mm to 130mm in accordance with JB/T8564 standard. 

Product Parameters

Precision Matching of Ball screw bearings:

CZPT precision angular contact ball bearings can be supplied by assemble sets with two, three, 4 or 5 bearings to form a complete bearing group. The elements of bearing group are produced by matching requirement, so that the bearings can get the predetermined preload and rigidity after installation. The inner and outer diameter and angle of the same bearing group shall be controlled within the allowable tolerance. For bearings with special requirement, the tolerance will be even smaller.

 

Technical parameters of ZYS ball screw bearings 

Bearing model Dimensions (mm) Rated load (KN) Limit speed
 (r/min)
MAX axial 
load (KN)
Preload 
(KN)
Friction 
torque 
(N.mm)
Weight 
 (kg)
  d D B rsmin a Ca Coa Grease        
765711 12 32 10 0.6 24 11.6 12.5 17000 5.2 1.4 15 0.04
765712 15 35 11 0.6 27 12.5 15 15000 6.3 1.4 20 0.05
765713 17 40 12 0.6 31 16.6 20 13000 8.5 1.7 30 0.07
765714 20 47 14 1.0 36 19.3 25 12000 10.6 2.3 50 0.13
765715 25 52 15 1.0 41 22 30.5 11000 13.2 2.5 65 0.16
765716 30 62 16 1.0 48 26 39 9000 17.0 2.9 85 0.24
765717 35 72 17 1.1 55 30 50 8000 21.2 3.3 115 0.34
765718 40 80 18 1.1 62 37.5 64 7000 28.0 4.3 170 0.44
765719 45 85 19 1.1 66 38 68 6700 28.0 4.5 190 0.50
765710 50 90 20 1.1 71 39 75 6300 31.5 4.6 230 0.57
765711 55 100 21 1.5 78 40.5 81.5 6000 33.5 4.9 250 0.75
765712 60 110 22 1.5 86 56 112 5000 47.5 6.5 350 0.96
765713 65 120 23 1.5 92 57 122 4800 50.0 7.0 410 1.20
765714 70 125 24 1.5 96 65.5 137 4500 56.0 7.0 440 1.32
765715 75 130 25 1.5 101 67 150 4300 63.0 7.6 480 1.45
765716 80 140 26 2.0 108 76.5 175 4000 75.0 8.9 600 1.76
765717 85 150 28 2.0 116 86.5 196 3800 85.0 10.5 760 2.19
765718 90 160 30 2.0 123 98 224 3600 100 11.0 790 2.69
765719 95 170 32 2.1 131 110 255 3400 112 12.5 950 3.26
765710 100 180 34 2.1 138 122 285 3200 125 14.0 1100 3.91
765712 110 200 38 2.1 153 146 355 2800 153 16.4 1400 5.5
765714 120 215 40 2.1 165 176 425 2600 185 20.6 2000 6.5
765716 130 230 40 3.0 176 180 455 2400 200 20.6 2100 7.4
760304 20 52 15 1.1 39 24.5 32 11000 14.0 2.9 60 0.17
760305 25 62 17 1.1 46 28.5 41.5 9000 18.0 3.3 85 0.28
760306 30 72 19 1.1 53 34.5 55 8000 23.6 4.3 130 0.41
760307 35 80 21 1.5 60 36.5 61 7000 26.5 4.8 170 0.55
760307X3 35 90 23 1.5 68 50 83 6300 35.5 5.6 225 0.81
760308 40 90 23 1.5 68 50 83 6300 35.5 5.6 225 0.76
760309 45 100 25 1.5 75 58.5 104 5600 45.0 7.0 300 1.02
760309X3 45 110 27 2.0 83 69.5 127 5000 53.0 7.6 360 1.41
76571 50 110 27 2.0 83 69.5 127 5000 53.0 7.6 360 1.33
76571 55 120 29 2.0 90 78 146 4800 63.0 8.8 460 1.69
76571 60 130 31 2.1 98 88 166 4500 75.0 10.0 540 2.12
76571 65 140 33 2.1 1.5 100 196 4000 90.0 12.0 700 2.60
76571 70 150 35 2.1 113 110 220 3800 95.0 12.0 760 3.16
76571 75 160 37 2.1 120 125 255 3600 118.0 14.5 920 3.79
76571 80 170 39 2.1 128 137 285 3400 132.0 16.0 1100 4.50
760320 100 215 47 3.0 160 193 430 2600 212.0 21.5 1700 8.73
760322 110 240 50 3.0 176 250 560 2400 265.0 29.3 2500 11.8
760324 120 260 55 3.0 192 265 620 2200 280.0 31.3 2750 14.6
760326 130 280 58 3.0 206 290 695 2000 305.0 33.7 3100 18.7

Application  of ZYS ball screw bearings  :
Typical Applications: electric motors, fork lift trucks, pumps, textile machinery, transmissions, wire CZPT & spring machinery, medium belt conveyors, wood working machineries, and so on.

Aviation Cargo Systems Industrial Mixers & Shakers
Aerospace CZPT Actuators Intrusion Detection Systems
Anemometer Material Handling Rollers
ATMs & Card Readers Medical Actuator
Bicycles Medical Diagnostic Equipment
Commercial Blenders Medical Imaging Equipment
Dental Hand Tools Medical Laser Surgery
Electrical Motors Medical Surgical Tools
Engines Off Highway Cranes
Escalators and Elevators Optical Encoders
Fishing Reels Plastic Card Printers
Flight Support Systems Power Hand Tools
Flow Meters Printing Rollers
Galvanometers Roller Doors
Gas Engine Pull Start Assembly Scissor & Platform Lifts
Gas Meters Sensors & Potentiometers
Gas Powered Motors Solar Panels Actuators

 

Our Advantages

ZYS Precision Bearing Quality Control and Assurance:

Austrian AICHELIN heat treatment equipment and long-life heat treatment process provide a strong guarantee for the continuous and reliable operation of bearings.

 

Certifications

ZYS Quality assurance 

 

Company Profile

HangZhou Bearing Research Institute Co., Ltd. (ZYS) is the only state level comprehensive research institute in China’s bearing industry since 1958. CZPT has total assets of 2.06 billion RMB, owns one research and development center, 3 industrial bases. CZPT has advanced bearing manufacturing equipments and world firstclass testing equipments and have solid strength in manufacturing, measuring and testing of bearing and related components with high precision and high reliability to perform batch production of various high-rank bearing products and components with inner diameter of 0.6mm to outer diameter of 6.8m. 

HangZhou Bearing Research Institute Co., Ltd. is a high-tech enterprise specializing in the development of “high-rank, precise, advanced, unique, special” bearing products for the key units in various fields of national economic construction. Its predecessor, HangZhou Bearing Research Institute, was established in 1958. It is the only state-level comprehensive research institute in China’s bearing industry. In 1999, it entered China National Machinery Industry Group Co., Ltd. and transformed into a science and technology enterprise.

We focus on developing high performance bearing products for key units of national economic construction. We perform batch production of various high rank bearing products and components with inner diameter of 0.6mm to outer diameter of 6.8m. We are mainly engaged in the research, development, production and sales of precision bearing, special bearing, high speed machine tool spindle, bearing special equipment, bearing testing instruments, bearing testing machine and bearing special materials, which are widely used in the fields of aerospace, machine tools, wind power generation, mine metallurgy, petrochemical, medical equipment, automobiles and rail transit, construction machinery, intelligent manufacturing services, etc.

We have total assets of 2.06 billion RMB, own one research and development center, 3 industrial bases and cover an area of more than 47 hectares. We have advanced bearing manufacturing equipments and world first-class testing equipments and have solid strength in manufacturing, measuring and testing of bearing and related components with high precision and high reliability. We have more than 380 technical staff of bearing related disciplines, thus we maintain a leading position in the aspects of bearing design, basic theoretical research, lubrication technology, metallic and non-metallic materials, testing and industry standards. 
 

FAQ

Q: Are you trading company or manufacturer?
A: CZPT is bearing manufacturer, the only first-class comprehensive research institute in China bearing industry.

Q: How do you control quality of bearing?
A: CZPT has established quality control systems for each kind of bearing and spindle. All products and services passed ISO9001-2008 Quality Certificate.

Q: What is the MOQ?
A: It depends on the bearing type. You can send inquiry or send e-mail  for more information.

Q: How about the package?
A: Industrial packing in general condition (Plastic tube+ carton+ pallet). Accept design package when OEM.

Q: How long is the delivery time?
A: It will take about 10 to 40 days, depends on the model and quantity.

Q: How about the shipping?
A: We can arrange the shipment or you may have the forwarder.

Q: Is sample avaiable?
A: Yes, sample order is acceptable.

Q: Can we use our own LOGO or design on bearings?
A: Yes. OEM is acceptable. We can design the bearing with your requirements and use your own LOGO and package design.

 

Contact us

Website: chinazys
 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 60°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Thrust Bearing
Material: Bearing Steel
Customization:
Available

|

Customized Request

linear bearing

Challenges and Solutions for Addressing Friction and Wear in Linear Bearings

Friction and wear are common challenges in linear bearings that can impact their performance and lifespan. Here are the challenges and some solutions to address them:

  • 1. Challenge: Friction:

Friction between the bearing components can lead to increased energy consumption, heat generation, and reduced efficiency.

  • Solution: Lubrication:

Proper lubrication is essential to minimize friction. Lubricants reduce the contact between moving parts, allowing smoother motion and reducing wear. Choosing the right lubricant and applying it correctly can significantly mitigate friction-related issues.

  • 2. Challenge: Wear:

Continuous movement can lead to wear on the bearing surfaces, affecting precision and performance over time.

  • Solution: Regular Maintenance:

Implementing a regular maintenance schedule can help monitor wear and replace worn components before they compromise performance. This includes cleaning, re-lubrication, and periodic inspection of the bearing’s condition.

  • 3. Challenge: Contaminants:

Dust, debris, and foreign particles can enter the bearing system, leading to increased friction and accelerated wear.

  • Solution: Sealing and Protection:

Using seals, covers, or protective enclosures can help prevent contaminants from entering the bearing system. These protective measures maintain the integrity of the lubricant and extend the bearing’s lifespan.

  • 4. Challenge: Improper Installation:

If linear bearings are not installed correctly, misalignment and uneven load distribution can contribute to friction and wear.

  • Solution: Precise Installation:

Follow manufacturer guidelines for proper installation, ensuring accurate alignment and even load distribution. This reduces the risk of premature wear and ensures optimal performance.

  • 5. Challenge: Inadequate Lubrication:

If the linear bearings are under-lubricated or over-lubricated, it can lead to increased friction and wear.

  • Solution: Lubrication Management:

Monitor and manage lubrication levels to ensure they are within the recommended range. Regularly assess the lubricant’s condition and replenish as needed to maintain optimal performance.

  • 6. Challenge: High Loads and Speeds:

High loads and speeds can increase friction and wear on linear bearings.

  • Solution: Proper Selection:

Select linear bearings that are designed to handle the specific loads and speeds of the application. This ensures that the bearings can operate effectively under the given conditions.

Addressing friction and wear challenges in linear bearings requires a combination of proper maintenance practices, appropriate lubrication, protective measures, and careful selection of bearings. By implementing these solutions, the performance and longevity of linear bearings can be optimized.

linear bearing

Enhancing 3D Printers and Additive Manufacturing with Linear Bearings

Linear bearings play a crucial role in the efficient and precise operation of 3D printers and additive manufacturing processes. Here’s how they contribute to these technologies:

  • Precise Motion Control:

Linear bearings provide smooth and accurate linear motion control, ensuring precise positioning of the print head or build platform. This precision is essential for creating intricate and detailed 3D printed objects.

  • High Repeatability:

Linear bearings offer high repeatability, enabling the printer to consistently recreate complex geometries layer by layer. This is crucial for producing parts with consistent quality and dimensions.

  • Reduced Vibration and Wobble:

The smooth motion provided by linear bearings minimizes vibrations and wobbling during printing, leading to smoother surface finishes and improved print quality.

  • High-Speed Printing:

Linear bearings can handle high speeds, allowing 3D printers to operate at faster print speeds without sacrificing accuracy. This is beneficial for reducing overall print time.

  • Compact Design:

Many linear bearings have a compact and space-efficient design, which is important for fitting within the confined spaces of 3D printers while maintaining the required range of motion.

  • Low Friction and Wear:

Linear bearings are designed to minimize friction and wear, leading to longer lifespan and reduced maintenance requirements. This is especially important in additive manufacturing where continuous operation is desired.

  • Smooth Layer-by-Layer Building:

In additive manufacturing, linear bearings enable precise movement of the build platform or print head, ensuring that each layer is accurately aligned and built upon the previous layer.

  • Complex Geometries:

Linear bearings enable 3D printers to create complex and intricate geometries that require precise control over the movement of the print head and build platform.

Overall, linear bearings contribute to the success of 3D printing and additive manufacturing by providing the necessary motion control, precision, and reliability needed to create high-quality and intricate 3D printed objects.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China Professional CZPT Super Precision Bearing 76 Series Ball Screw Support Bearings 760317tn1/P4 for Ball Screw Linear   deep groove ball bearingChina Professional CZPT Super Precision Bearing 76 Series Ball Screw Support Bearings 760317tn1/P4 for Ball Screw Linear   deep groove ball bearing
editor by CX 2024-02-19

China wholesaler Deep Groove Ball Bearing Pullers Front Wheel Hub Pillow Block Linear Wheel Taper Roller Connecting Rod Rear Wheel Needle Bearings Extractor Manufacturing wholesaler

Product Description

    deep groove ball bearing pullers front wheel hub pillow block linear wheel taper                 roller connecting rod rear wheel needle bearings extractor manufacturing

Application of ball bearing

Ball bearings are used in a wide variety of applications, including:

  • Machinery: Ball bearings are used in machinery applications to reduce friction and wear between rotating parts. They are found in a variety of machines, such as cars, trucks, airplanes, and power tools.
  • Electrical equipment: Ball bearings are used in electrical equipment to support rotating parts. They are found in a variety of electrical appliances, such as fans, motors, and generators.
  • Medical devices: Ball bearings are used in medical devices to support rotating parts. They are found in a variety of medical devices, such as pacemakers, artificial joints, and surgical instruments.
  • Sporting goods: Ball bearings are used in sporting goods to reduce friction and wear between rotating parts. They are found in a variety of sporting goods, such as bicycles, skateboards, and golf clubs.
  • Toys: Ball bearings are used in toys to support rotating parts. They are found in a variety of toys, such as spinning tops, yo-yos, and fidget spinners.

Ball bearings offer a number of advantages over other types of bearings, including:

  • Low friction: Ball bearings have low friction, which means that they can reduce the amount of energy that is wasted.
  • High load capacity: Ball bearings have a high load capacity, which means that they can support a lot of weight.
  • Durability: Ball bearings are durable and can withstand a lot of wear and tear.
  • Low maintenance: Ball bearings require little or no maintenance.

Overall, ball bearings are a versatile and reliable type of bearing. They are used in a wide variety of applications to reduce friction, wear, and energy loss.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Aligning Bearings
Load Direction: Axial Bearing
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Enhancing 3D Printers and Additive Manufacturing with Linear Bearings

Linear bearings play a crucial role in the efficient and precise operation of 3D printers and additive manufacturing processes. Here’s how they contribute to these technologies:

  • Precise Motion Control:

Linear bearings provide smooth and accurate linear motion control, ensuring precise positioning of the print head or build platform. This precision is essential for creating intricate and detailed 3D printed objects.

  • High Repeatability:

Linear bearings offer high repeatability, enabling the printer to consistently recreate complex geometries layer by layer. This is crucial for producing parts with consistent quality and dimensions.

  • Reduced Vibration and Wobble:

The smooth motion provided by linear bearings minimizes vibrations and wobbling during printing, leading to smoother surface finishes and improved print quality.

  • High-Speed Printing:

Linear bearings can handle high speeds, allowing 3D printers to operate at faster print speeds without sacrificing accuracy. This is beneficial for reducing overall print time.

  • Compact Design:

Many linear bearings have a compact and space-efficient design, which is important for fitting within the confined spaces of 3D printers while maintaining the required range of motion.

  • Low Friction and Wear:

Linear bearings are designed to minimize friction and wear, leading to longer lifespan and reduced maintenance requirements. This is especially important in additive manufacturing where continuous operation is desired.

  • Smooth Layer-by-Layer Building:

In additive manufacturing, linear bearings enable precise movement of the build platform or print head, ensuring that each layer is accurately aligned and built upon the previous layer.

  • Complex Geometries:

Linear bearings enable 3D printers to create complex and intricate geometries that require precise control over the movement of the print head and build platform.

Overall, linear bearings contribute to the success of 3D printing and additive manufacturing by providing the necessary motion control, precision, and reliability needed to create high-quality and intricate 3D printed objects.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China wholesaler Deep Groove Ball Bearing Pullers Front Wheel Hub Pillow Block Linear Wheel Taper Roller Connecting Rod Rear Wheel Needle Bearings Extractor Manufacturing   wholesalerChina wholesaler Deep Groove Ball Bearing Pullers Front Wheel Hub Pillow Block Linear Wheel Taper Roller Connecting Rod Rear Wheel Needle Bearings Extractor Manufacturing   wholesaler
editor by CX 2024-02-18

China high quality Car Accessories/Motorcycle Parts/Distributor/Ball/Wheel/Deep Groove Ball/Auto/Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way Bearing 6211 deep groove ball bearing

Product Description

The rings and balls of all-ceramic deep groove ball bearings are made of silicon nitride (Si3N4) ceramic material. This bearing can be designed as a full ball or with PTFE, PEEK or stainless steel 304/316 cage. PTFE is the default standard cage.
Full ceramic deep groove ball bearings have the characteristics of non-magnetic and electrical insulation, wear-resistant and corrosion-resistant, oil-free and self-lubricating, high temperature and cold resistance, and can be used in extremely harsh environments and special working conditions. It can be used in high temperature environment above 400ºC under the condition of full ball or equipped with stainless steel 316 cage. The PEEK cage can also be used at temperatures above 250°C. For CZPT temperatures (for example, lower than -70°C), full ceramic bearings with PTFE cages or stainless steel 316 cages can be used. Normally, the normal radial clearance is C0. When it is necessary to adapt to the extreme environment, other clearances can be customized.

open size(mm) Installation size (mm) weight weight
model Inner diameter Outer diameter Thickness Chamfer da da Da ra Si3N4 ZrO2
d D B r(min) min max max max (kg) (kg)
683 3 7 2 0.1   /     0.00013 0.00571
693 8 3 0.15   /     0.00571 0.0005
603 9 3 0.15   /     0.0004 0.0007
623 10 4 0.15   /     0.0007 0.0013
633 13 5 0.15   /     0.0014 0.0571
684 4 9 2.5 0.1 4.8 / 8.2 0.1 0.0003 0.0005
694 11 4 0.15 5.2 / 9.8 0.15 0.0007 0.0013
604 12 4 0.2 5.6 / 10.4 0.2 0.0009 0.0017
624 13 5 0.2 5.6 / 11.4 0.2 0.0013 0.571
634 16 5 0.3 6 / 14 0.3 0.0571 0.004
685 5 11 3 0.15 6.2 / 9.8 0.15 0.0005 0.0009
695 13 4 0.2 6.6 / 11.4 0.2 0.001 0.0019
605 14 5 0.2 6.6 / 12.4 0.2 0.0015 0.0571
625 16 5 0.3 7 / 14 0.3 0.0571 0.0038
635 19 6 0.3 7 / 17 0.3 0.0036 0.0066
686 6 13 3.5 0.15 7.2 / 11.8 0.15 0.0008 0.0015
696 15 5 0.2 7.6 / 13.4 0.2 0.0016 0.003
606 17 6 0.3 8 / 15 0.3 0.0571 0.0046
626 19 6 0.3 8 / 17 0.3 0.0034 0.0063
636 22 7 0.3 8 / 20 0.3 0.0058 0.5718
687 7 14 3.5 0.15 8.2 / 12.8 0.15 0.0009 0.0017
697 17 5 0.3 9 / 15 0.3 0.0571 0.004
607 19 6 0.3 9 / 17 0.3 0.0032 0.0059
627 22 7 0.3 9 / 20 0.3 0.0053 0.0098
637 26 9 0.3 9 / 24 0.3 0.01 0.0185
688 8 16 4 0.2 9.6 / 14.4 0.2 0.0014 0.0571
698 19 6 0.3 10 / 17 0.3 0.003 0.0056
608 22 7 0.3 10 / 20 0.3 0.005 0.0093
628 24 8 0.3 10 / 22 0.3 0.0072 0.013
638 28 9 0.3 10 / 26 0.3 0.012 0.571
689 9 17 4 0.2 10.6 / 15.4 0.2 0.0015 0.0571
699 20 6 0.3 11 / 18 0.3 0.0035 0.0065
609 24 7 0.3 11 / 22 0.3 0.006 0.011
629 26 8 0.3 11 / 24 0.3 0.0081 0.015
639 30 10 0.6 13 / 26 0.6 0.015 0.571
6800 10 19 5 0.3 12 12 17 0.3 0.0571 0.004
6900 22 6 0.3 12 12.5 20 0.3 0.0038 0.007
6000 26 8 0.3 12 13 24 0.3 0.0075 0.014
6200 30 9 0.6 14 16 26 0.6 0.013 0.571
6300 35 11 0.6 14 16.5 31 0.6 0.571 0.04
6801 12 21 5 0.3 14 14 19 0.3 0.0571 0.005
6901 24 6 0.3 14 14.5 22 0.3 0.0042 0.008
16001 28 7 0.3 14 / 26 0.3 0.0079 0.015
6001 28 8 0.3 14 15.5 26 0.3 0.0092 0.017
6201 32 10 0.6 16 17 28 0.6 0.015 0.571
6301 37 12 1 17 18 32 1 0.571 0.046
6802 15 24 5 0.3 17 17 22 0.3 0.571 0.005
6902 28 7 0.3 17 17 26 0.3 0.0063 0.012
16002 32 8 0.3 17 / 30 0.3 0.011 0.571
6002 32 9 0.3 17 19 30 0.3 0.013 0.571
6202 35 11 0.6 19 20.5 31 0.3 0.019 0.035
6302 42 13 1 20 22.5 37 1 0.035 0.064
6803 17 26 5 0.3 19 19 24 0.3 0.571 0.005
6903 30 7 0.3 19 19.5 28 0.3 0.0071 0.013
16003 35 8 0.3 19 / 33 0.3 0.014 0.571
6003 35 10 0.3 19 21.5 33 0.3 0.017 0.032
6203 40 12 0.6 21 23.5 36 0.6 0.571 0.052
6303 47 14 1 22 25.5 42 1 0.047 0.087
6403 62 17 1.1 23.5 / 55.5 1 0.11 0.21
6804 20 32 7 0.3 22 22.5 30 0.3 0.007 0.013
6904 37 9 0.3 22 24 35 0.3 0.015 0.571
16004 42 8 0.3 22 / 40 0.3 0.02 0.037
6004 42 12 0.6 24 25.5 38 0.6 0.571 0.052
6204 47 14 1 25 26.5 42 1 0.045 0.082
6304 52 15 1.1 26.5 28 45.5 1 0.06 0.11
6404 72 19 1.1 26.5 / 65.5 1 0.17 0.31
6805 25 37 7 0.3 27 27 35 0.3 0.009 0.016
6905 42 9 0.3 27 28.5 40 0.3 0.018 0.032
16005 47 8 0.3 27 / 45 0.3 0.571 0.045
6005 47 12 0.6 29 30 43 0.6 0.033 0.061
6205 52 15 1 30 32 47 1 0.054 0.099
6305 62 17 1.1 31.5 36 55.5 1 0.098 0.18
6405 80 21 1.5 33 / 72 1.5 0.22 0.41
6806 30 42 7 0.3 32 32 50 1 0.01 0.018
6906 47 9 0.3 32 34 57 1 0.571 0.04
16006 55 9 0.3 32 42.5 65.5 1 0.036 0.067
6006 55 13 1 35 36.5 53 1 0.048 0.089
6206 62 16 1 35 38.5 60 1 0.083 0.15
6306 72 19 1.1 36.5 42.5 68.5 1 0.14 0.27
6406 90 23 1.5 54 / 82 2 0.31 0.57
6807 35 47 7 0.3 37 37 45 0.3 0.011 0.571
6907 55 10 0.6 39 39 51 0.6 0.031 0.058
16007 62 9 0.3 37 / 60 0.3 0.045 0.082
6007 62 14 1 40 41.5 57 1 0.063 0.12
6207 72 17 1.1 41.5 44.5 65.5 1 0.12 0.22
6307 80 21 1.5 43 47 72 1.5 0.19 0.36
6407 100 25 1.5 43 / 92 1.5 0.4 0.73
6808 40 52 7 0.3 42 42 50 0.3 0.013 0.02
6908 62 12 0.6 44 46 58 0.6 0.05 0.09
16008 68 9 0.3 42 / 66 0.3 0.05 0.1
6008 68 15 1 45 47.5 63 1 0.08 0.15
6208 80 18 1.1 46.5 50.5 73.5 1 0.15 0.28
6308 90 23 1.5 48 53 80 1.5 0.27 0.49
6408 110 27 2 49 / 101 2 0.513 0.946
6809 45 58 7 0.3 47 47.5 56 0.3 0.016 0.571
6909 68 12 0.6 49 50 64 0.6 0.053 0.097
16009 75 10 0.6 49 / 71 0.6 0.07 0.13
6009 75 16 1 50 53.5 70 1 0.1 0.19
6209 85 19 1.1 51.5 55.5 78.5 1 0.175 0.32
6309 100 25 1.5 53 61.5 92 1.5 0.345 0.64
6409 120 29 2 54 / 111 2 0.64 1.18
6810 50 65 7 0.3 52 52.5 63 0.3 0.571 0.038
6910 72 12 0.6 54 55 68 0.6 0.06 0.1
16571 80 10 0.6 54 / 76 0.6 0.07 0.13
6571 80 16 1 55 58.5 75 1 0.11 0.2
6210 90 20 1.1 56.5 60 83.2 1 0.19 0.35
6310 110 27 2 59 68 101 2 0.44 0.82
6410 130 31 2.1 61 / 119 2 0.78 1.45
6811 55 72 9 0.3 57 59 70 0.3 0.03 0.06
6911 80 13 1 60 61.5 75 1 0.08 0.15
16011 90 11 0.6 59 / 86 0.6 0.11 0.2
6011 90 18 1.1 61.5 64 83.5 1 0.16 0.29
6211 100 21 1.5 63 66.5 92 1.5 0.26 0.48
6311 120 29 2 64 72.5 111 2 0.57 1.05
6411 140 33 2.1 66 / 129 2 0.95 1.76
6812 60 78 10 0.3 62 64 76 0.3 0.04 0.08
6912 85 13 1 65 66 80 1 0.08 0.15
16012 95 11 0.6 64 / 91 0.6 0.12 0.22
6012 95 18 1.1 66.5 69 88.5 1 0.17 0.32
6212 110 22 1.5 68 74.5 102 1.5 0.33 0.6
6312 130 31 2.1 71 79 119 2 0.72 1.32
6412 150 35 2.1 71   139 2 1.15 2.13
6813 65 85 10 0.6 69 69 81 0.6 0.05 0.1
6913 90 13 1 70 71.5 85 1 0.09 0.17
16013 100 11 0.6 69 / 96 0.6 0.13 0.23
6013 100 18 1.1 71.5 73 93.5 1 0.18 0.34
6213 120 23 1.5 73 80 112 1.5 0.42 0.77
6313 140 33 2.1 76 85.5 129 2 0.88 1.62
6814 70 90 10 0.6 74 74.5 86 0.6 0.056 0.1
6914 100 16 1 75 77.5 95 1 0.15 0.27
16014 110 13 0.6 74 / 106 0.6 0.18 0.34
6014 110 20 1.1 76.5 80.5 103.5 1 0.25 0.47
6214 125 24 1.5 78 84 117 1.5 0.45 0.84
6314 150 35 2.1 81 92 139 2 1.07 1.98
6815 75 95 10 0.6 79 79.5 91 0.6 0.06 0.11
6915 105 16 1 80 82 100 1 0.15 0.28
16015 115 13 0.6 79 / 111 0.6 0.19 0.36
6015 115 20 1.1 81.5 85.5 108.5 1 0.27 0.5
6215 130 25 1.5 83 90 122 1.5 0.5 0.92
6816 80 100 10 0.6 84 84.5 96 0.6 0.063 0.12
6916 110 16 1 85 87.5 105 1 0.16 0.3
16016 125 14 0.6 84 / 121 0.6 0.26 0.48
6016 125 22 1.1 86.5 91 118.5 1 0.36 0.67
6216 140 26 2 89 95.5 131 2 0.59 1.09
6817 85 110 13 1 90 90.5 105 1 0.11 0.2
6917 120 18 1.1 91.5 94.5 113.5 1 0.23 0.42
16017 130 14 0.6 89 / 126 0.6 0.27 0.5
6017 130 22 1.1 91.5 96 123.5 1 0.38 0.71
6217 150 28 2 94 102 141 2 0.73 1.35
6818 90 115 13 1 95 95.5 110 1 0.12 0.21
6918 125 18 1.1 96.5 98.5 118.5 1 0.24 0.45
16018 140 16 1 95 / 135 1 0.36 0.67
6018 140 24 1.5 98 103 132 1.5 0.5 0.92
6819 95 120 13 1 100 102 115 1 0.12 0.23
6919 130 18 1.1 101.5 104 123.5 1 0.25 0.46
16019 145 16 1 100 / 140 1 0.38 0.7
6019 145 24 1.5 103 109 137 1.5 0.51 0.95
6820 100 125 13 1 105 106 120 1 0.13 0.24
6920 140 20 1.1 106.5 111 133.5 1 0.35 0.64
16571 150 16 1 105 / 145 1 0.39 0.73
6571 150 24 1.5 108 113 142 1.5 0.54 0.99
6821 105 130 13 1 110 111 125 1 0.14 0.25
6921 145 20 1.1 111.5 116 138.5 1 0.36 0.66
6822 110 140 16 1 115 117 135 1 0.21 0.38
6922 150 20 1.1 116.5 121 143.5 1 0.37 0.69
6824 120 150 16 1 125 127 145 1 0.22 0.41

About us
ZheJiang REET BEARING.CO.,LTD is a professional bearing manufacturer and exporter.
We have a wealth of technical.All producing processes are finished in our manufactory. As an ISO9001:2000 certified manufacturer,we will solve various problems in application and use of our bearings. 
Our company is an authorized distributor of FAG, INA, CZPT and other world brand bearings.Our company has the right to self-export bearings and launches its own brand RTB.
Our bearing had been exported to more than 20 countries worldwide and are warmly welcomed.
We are looking forward to your order.
FAQ

1.Is the company a production factory or a trading company?
ZheJiang REET BEARING CO.,LTD is a manufacturing enterprise focusing on bearings and integrating research, production and sales.

2.How many the MOQ of your company?
Depending on the size of the bearing, the MOQ is variable, if you are interested, you can contact me for a quote.

3.Does the company accept OEM or customized bearings?
In addition to standard products, we also supply non-standard and modified standard products for special application. Meanwhile, we provide OEM service.

4.Can the company provide free samples?
We can provide samples for free. You only need to provide shipping.

5.What are the company’s delivery terms?
We can accept EXW,FOB,CFR,CIF,etc. You can choose the 1 which is the most convenient cost effective for you.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Chamfer: 1.5
Si3n4 Weight: 0.26
Zro2 Weight: 0.48
Contact Angle: 15°
Aligning: Aligning Bearing
Separated: Separated
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Signs of Wear or Damage in Linear Bearings and Maintenance

Identifying signs of wear or damage in linear bearings is essential for maintaining their performance and preventing costly failures. Here are common signs of wear and damage and how to address them:

  • 1. Increased Friction:

If you notice increased resistance during linear motion, it could indicate that the bearing components are wearing out. This can lead to reduced efficiency and accuracy.

  • Solution: Regular Lubrication:

Ensure proper lubrication of the bearings to minimize friction and prevent premature wear. Follow manufacturer recommendations for lubrication intervals and types.

  • 2. Uneven Movement:

If the linear motion becomes uneven, jerky, or experiences sudden stops, it may be due to damaged bearing components.

  • Solution: Inspection and Replacement:

Inspect the bearings and associated components for any signs of damage, such as dents or cracks. Replace any damaged parts to restore smooth motion.

  • 3. Abnormal Noise:

Unusual noises during linear motion, such as grinding or clicking sounds, can indicate friction and wear within the bearings.

  • Solution: Lubrication and Inspection:

Lubricate the bearings as recommended and inspect for any foreign particles or debris that might be causing the noise. Clean and replace components if necessary.

  • 4. Increased Play or Clearance:

If there is noticeable play or excessive clearance in the linear system, it can affect precision and lead to inaccuracies.

  • Solution: Adjustment or Replacement:

Check for loose bolts, misalignment, or worn components causing the play. Make necessary adjustments or replace worn parts to restore proper fit and function.

  • 5. Reduced Performance:

If your linear system is no longer achieving the desired accuracy or performance, it could be due to worn bearings.

  • Solution: Maintenance and Replacement:

Regularly perform maintenance tasks, such as cleaning, lubrication, and inspection. If performance does not improve, consider replacing the bearings with new ones.

  • 6. Visible Damage:

Any visible signs of physical damage, such as deformation, corrosion, or cracks, require immediate attention.

  • Solution: Replacement:

If the damage is severe, replace the damaged bearings promptly to avoid further issues.

Regular maintenance practices, including proper lubrication, cleaning, and inspection, are crucial for preventing wear and damage in linear bearings. Addressing any signs of wear early can extend the lifespan of the bearings and ensure consistent performance in various applications.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China high quality Car Accessories/Motorcycle Parts/Distributor/Ball/Wheel/Deep Groove Ball/Auto/Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way Bearing 6211   deep groove ball bearingChina high quality Car Accessories/Motorcycle Parts/Distributor/Ball/Wheel/Deep Groove Ball/Auto/Roller/Pillow Block/Needle Roller/Linear/Ceramic/One Way Bearing 6211   deep groove ball bearing
editor by CX 2024-02-17