China Professional Ball bearing/Needle/Pillow Block/Auto/Spherical/Taper/Taperd Roller/Deep Groove Ball/Cylindrical Roller/Angular Contact Ball/Linear bearings 6202-2RS 6202-2RZ carrier bearing

Product Description

Ball bearing/Needle/Pillow Block/Auto/Spherical/Taper/Taperd Roller/Deep Groove Ball/Cylindrical Roller/Angular Contact Ball/Linear bearings 6202-2RS 6202-2RZ

The Applications of F&D bearing with Precision auto bearing 6202-2RS CZPT bearing  factory  : This is how bearings are used in cars

1. How are bearings used in a car?

In order to increase a car’s performance by, for example, decreasing the CO2 (carbon dioxide) emissions that cause global warming, or reducing the number of breakdowns, bearings becomes more and more important.

In Part 1, we introduced the idea that, in the majority of cars using conventional engines, there are usually around 100-150 bearings at work.
Part 1: What Are Bearings? Let’s learn about the basic functions of bearings!

 

In this part, we will explain how bearings are used in the transmission and differential gear that transfer power from the engine to the wheels.

2. Bearings used in the transmission

Sometimes we want to drive faster, or we need a large amount of driving force such as when driving uphill. It is necessary to achieve a driving force appropriate for the driving circumstances.

The transmission is a device that converts the power from the engine into driving force and transmits it to the wheels. Inside, many different types of bearings are working together, each utilizing their own strength, and inside the individual parts of a car there are also a great many bearings in use.

Transmissions can be classified into 2 broad categories: manual and automatic. In cars with manual transmissions, a gear stick used to operate it is installed next to the driver’s seat.

The driver operates the gear stick manually, in order to convert the power from the engine into a force appropriate for the situation in which the driver is driving.
The manual transmission consists of shafts and gears. These parts are supported by bearings, and we would now like to introduce those bearings.

Bearings that support shafts

A bearing, of a type to match the magnitude of the power from the engine, is used, and it supports both the rotation of the shafts and the force being applied by the gears.

Table 1: Bearings that support shafts

Radial load Axial load Type of bearing
Small Small Deep groove ball bearing
Big Small Cylindrical roller bearing
Big Big Tapered roller bearing

We explained about radial and axial loads in Part 4, so please check there as well if you haven’t already.

Part 4: “What Are the Differences Between Bearings? The various types and special features of bearings”

 

Bearings that support gears

In a manual transmission, gears remain in rotation and interlocking with each other at all times.
In order to convey the appropriate driving force to the wheels for the speed we want to travel, we use the gear stick to select the gear (A) that best fits that driving force. The selected gear (A) is connected to the shaft, and rotates the shaft the same number of times.

In order to transmit a different driving force to the wheels for the changed situation, we use the gear stick to disconnect the connected gear (A) from the shaft and select the gear (B) that best fits that driving force. The selected gear (B) is connected to the shaft, and rotates the shaft with the same number of rotations.

In this case, the gear that is disconnected from the shaft (A) rotates independently of the shaft.

Just as the gear and the shaft have a different number of rotations, the needle roller bearing (a combination of needle rollers and cages) is mounted between the gear and the shaft, and rotates between the inside surface of the gear and the outside surface of the shaft.

 

Conclusion

In this part we explained about the bearings that are used in devices that transmit power from the engine to the wheels, but there are a great many bearings used in the other parts of cars. By utilizing the strengths of each of the bearings, we increase the driving performance and safety of automobiles.
In order to achieve safer and more comfortable driving, there is a greater and greater demand for bearings with both high functionality and high reliability.

Product Specification:

Brand : F&D; CBB; OEM Bearing Size : 608,6000 series,6200 series,6300 series
Bearing Material : Bearing Steel Inner Diameter : 8 – 90 mm
Rolling : Steel balls Outer Diameter : 22 – 170 mm
Cage : Steel; Nylon Width Diameter : 7 – 39 mm
Oil/Grease : Great Wall; Shift; etc… Clearance : C2; C0; C3; C4
ZZ bearing : White or Yellow Shield Precision : P0/P6,ABEC-1;ABEC-3; ABEC-5
RS bearing : Black or Red Rubber seal Noise Level : Z1/Z2/Z3/Z4
Open bearing : No cover Vibration Level : V1/V2/V3/V4

Product Size

Bearing No.  I. D O. D W Loading Rating(KN) Steel Ball Parameter Max Speed
D D B Dynamic Static No.  Size Grease Oil
mm Inch mm Inch mm Inch Cr Cor mm R/min R/min
6000 10 0.3937 26 1.5716 8 0.3150 4.55 1.95 7 4.763 29000 34000
6001 12 0.4724 28 1.1571 8 0.3150 5.10 2.39 8 4.763 26000 30000
6002 15 0.5906 32 1.2598 9 0.3543 5.60 2.84 9 4.763 22000 26000
6003 17 0.6693 35 1.3780 10 0.3937 6.80 3.35 10 4.763 20000 24000
6004 20 0.7874 42 1.6535 12 0.4724 9.40 5.05 9 6.350 18000 21000
6005 25 0.9843 47 1.8504 12 0.4724 10.10 5.85 10 6.350 15000 18000
6006 30 1.1811 55 2.1654 13 0.5118 13.20 8.30 11 7.144 13000 15000
6007 35 1.3780 62 2.4409 14 0.5512 16.00 10.30 11 7.938 12000 14000
6008 40 1.5748 68 2.6772 15 0.5906 16.80 11.50 12 7.938 10000 12000
6009 45 1.7717 75 2.9528 16 0.6299 21.00 15.10 12 8.731 9200 11000
6571 50 1.9685 80 3.1496 16 0.6299 21.80 16.60 13 8.731 8400 9800
6011 55 2.1654 90 3.5433 18 0.7087 28.30 21.20 12 11.000 7700 9000
6012 60 2.3622 95 3.7402 18 0.7087 29.50 23.20 13 11.000 7000 8300
6013 65 2.5591 100 3.9370 18 0.7087 30.50 25.20 13 11.112 6500 7700
6014 70 2.7559 110 4.3307 20 0.7874 38.00 31.00 13 12.303 6100 7100
6015 75 2.9528 115 4.5276 20 0.7874 39.50 33.50 14 12.303 5700 6700
6016 80 3.1496 125 4.9213 22 0.8661 47.50 40.00 14 13.494 5300 6200

 

Bearing No.  I. D O. D W Loading Rating(KN) Steel Ball Parameter Max Speed
D D B Dynamic Static No.  Size Grease Oil
mm Inch mm Inch mm Inch Cr Cor mm R/min R/min
6200 10 0.3937 30 1.1811 9 0.3543 5.10 2.39 8 4.763 25000 30000
6201 12 0.4724 32 1.2598 10 0.3937 6.10 2.75 7 5.953 22000 26000
6202 15 0.5906 35 1.3780 11 0.4331 7.75 3.60 8 5.953 19000 23000
6203 17 0.6693 40 1.5748 12 0.4724 9.60 4.60 8 6.747 18000 21000
6204 20 0.7874 47 1.8504 14 0.5512 12.80 6.65 8 7.938 16000 18000
6205 25 0.9843 52 2.571 15 0.5906 14.00 7.85 9 7.938 13000 15000
6206 30 1.1811 62 2.4409 16 0.6299 19.50 11.30 9 9.525 11000 13000
6207 35 1.3780 72 2.8346 17 0.6693 25.70 15.30 9 11.112 9800 11000
6208 40 1.5748 80 3.1496 18 0.7087 29.10 17.80 9 12.000 8700 10000
6209 45 1.7717 85 3.3465 19 0.7480 32.50 20.40 10 12.000 7800 9200
6210 50 1.9685 90 3.5433 20 0.7874 35.00 23.20 10 12.700 7100 8300
6211 55 2.1654 100 3.9370 21 0.8268 43.50 29.20 10 14.288 6400 7600
6212 60 2.3622 110 4.3307 22 0.8661 52.50 36.00 10 15.081 6000 7000
6213 65 2.5591 120 4.7244 23 0.9055 57.50 40.00 10 16.669 5500 6500
6214 70 2.7559 125 4.9213 24 0.9449 62.00 44.00 11 16.462 5100 6000
6215 75 2.9528 130 5.1181 25 0.9843 66.00 49.50 11 17.462 4800 5600
6216 80 3.1496 140 5.5118 26 1.5716 72.50 53.00 11 18.256 4500 5300
6217 85 3.3465 150 5.9055 28 1.1571 83.50 64.00 11 19.844 4200 5000
6218 90 3.5433 160 6.2992 30 1.1811 96.00 71.50 10 22.225 4000 4700

 

Bearing No.  I. D O. D W Loading Rating(KN) Steel Ball Parameter Max Speed
D D B Dynamic Static No.  Size Grease Oil
mm Inch mm Inch mm Inch Cr Cor mm R/min R/min
6300 10 0.3937 35 1.3780 11 0.4331 8.20 3.50 6 7.144 23000 27000
6301 12 0.4724 37 1.4567 12 0.4724 9.70 4.20 6 7.938 20000 24000
6302 15 0.5906 42 1.6535 13 0.5118 11.40 5.45 7 7.938 17000 21000
6303 17 0.6693 47 1.8504 14 0.5512 13.50 6.55 7 8.731 16000 19000
6304 20 0.7874 52 2.571 15 0.5906 15.90 7.90 7 9.525 14000 27000
6305 25 0.9843 62 2.4409 17 0.6693 21.20 10.90 7 11.500 12000 14000
6306 30 1.1811 72 2.8346 19 0.7480 26.70 15.00 8 12.000 10000 12000
6307 35 1.3780 80 3.1496 21 0.8268 33.50 19.10 8 13.494 8800 10000
6308 40 1.5748 90 3.5433 23 0.9055 40.50 24.00 8 15.081 7800 9200
6309 45 1.7717 100 3.9370 25 0.9843 53.00 32.00 8 17.462 7000 8200
6310 50 1.9685 110 4.3307 27 1.0630 62.00 38.50 8 19.050 6400 7500
6311 55 2.1654 120 4.7244 29 1.1417 71.50 45.00 8 20.638 5800 6800
6312 60 2.3622 130 5.1181 31 1.2205 82.00 52.00 8 22.225 5400 6300
6313 65 2.5591 140 5.5118 33 1.2992 92.50 60.00 8 24.000 4900 5800
6314 70 2.7559 150 5.9055 35 1.3780 104.00 68.00 8 25.400 4600 5400
6315 75 2.9528 160 6.2992 37 1.4567 113.00 77.00 8 26.988 4300 5000
6316 80 3.1496 170 6.6929 39 1.5354 123.00 86.50 8 28.575 4000 4700

CONTACT US

Add:

PENGQIAO INDUSTRIAL PARK HENGHE 
TOWN HangZhou CITY ZHangZhouG CHINA

Web: fudabearing

Thanks for view Ball bearing/Needle/Pillow Block/Auto/Spherical/Taper/Taperd Roller/Deep Groove Ball/Cylindrical Roller/Angular Contact Ball/Linear bearings 6202-2RS 6202-2RZ . /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 2 years
Type: Engine Bearing
Material: Chrome Steel
Tolerance: P6
Certification: ISO9001, TS16949
Samples:
US$ 150/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Advancements in Linear Bearing Technology

Recent years have witnessed significant advancements in linear bearing technology, leading to improved performance and expanded applications. Some notable advancements include:

  • Rolling Element Innovations:

Manufacturers are introducing new types of rolling elements, such as ceramic balls and specialized coatings, to enhance load capacity, reduce friction, and extend the lifespan of linear bearings.

  • Lubrication Solutions:

Advanced lubrication techniques, including self-lubricating materials and greases with extended lifetimes, are being developed to optimize the performance of linear bearings while reducing maintenance needs.

  • Smart and Sensor-Integrated Bearings:

Linear bearings with built-in sensors provide real-time data on temperature, vibration, and wear. This enables predictive maintenance, early fault detection, and optimization of bearing performance.

  • Improved Corrosion Resistance:

New materials and coatings are being employed to enhance the corrosion resistance of linear bearings. This is particularly beneficial in environments where exposure to moisture and corrosive substances is a concern.

  • Reduced Friction and Energy Consumption:

Advanced engineering and design techniques are leading to lower friction coefficients and reduced energy consumption in linear bearings. This not only improves efficiency but also contributes to sustainability efforts.

  • High-Speed Capabilities:

Linear bearings capable of operating at higher speeds are being developed to meet the demands of applications requiring rapid and precise movements, such as in the semiconductor and electronics industries.

  • Enhanced Sealing and Contaminant Management:

New sealing technologies are being employed to provide better protection against contaminants and debris. This is critical for applications where cleanliness is paramount.

  • Integration with Industry 4.0:

Linear bearings are increasingly designed to be compatible with Industry 4.0 principles, allowing them to be integrated into digital manufacturing and automation systems for improved overall efficiency.

  • Material Advancements:

Novel materials with improved mechanical properties, wear resistance, and temperature tolerance are being used in the production of linear bearings, expanding their operating capabilities.

These recent advancements in linear bearing technology are enabling industries to achieve higher levels of precision, efficiency, reliability, and predictive maintenance, making linear bearings an essential component of modern machinery and systems.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China Professional Ball bearing/Needle/Pillow Block/Auto/Spherical/Taper/Taperd Roller/Deep Groove Ball/Cylindrical Roller/Angular Contact Ball/Linear bearings 6202-2RS 6202-2RZ   carrier bearingChina Professional Ball bearing/Needle/Pillow Block/Auto/Spherical/Taper/Taperd Roller/Deep Groove Ball/Cylindrical Roller/Angular Contact Ball/Linear bearings 6202-2RS 6202-2RZ   carrier bearing
editor by CX 2024-04-12